Optimization and Characterization of Cladophora sp. Alga Immobilized in Alginate Beads and Silica Gel for the Biosorption of Mercury from Aqueous Solutions

  • Joy G. Mokone
  • Hlanganani Tutu
  • Luke Chimuka
  • Ewa M. CukrowskaEmail author


Biosorption has gained much ground as a wastewater treatment technology. In this work, modified algal biosorbents were synthesized by immobilizing Cladophora sp. alga in alginate beads and silica gel. The resultant biosorbents were evaluated for the retrieval of mercury from aqueous solutions using batch scale experiments. Optimal metal removal was achieved at pH 5, agitation time 60 min, initial metal concentration 100 mg L−1, and temperature 16 °C. Moreover, the experimental data fitted the Langmuir isotherm, pseudo-second-order kinetic model and Dubinin-Radushkevich isotherm thus showing that biosorption occurred on a homogeneous layer and ion exchange was the dominant mechanism. Both biosorbents also had high selectivity for Hg2+ in multi-elemental solutions. This work showed the potential of Cladophora sp. immobilized in alginate beads and silica gel in removing mercury from industrial wastewaters.


Mercury Biosorption Cladophora sp. Alginate Silica gel 



The authors are thankful to the Government of Botswana and the PMA at the University of the Witwatersrand for financial support for Joy G. Mokone.


This research did not receive any specific grant from funding agencies in public, commercial, or non-profit sectors.


  1. Abdel-Aty, A. M., Ammar, N. S., Ghafar, H. H. A., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4(4), 367–374.CrossRefGoogle Scholar
  2. Abu Al-Rub, F. A., El-Naas, M. H., Benyahia, F., & Ashour, I. (2004). Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochemistry, 39(11), 1767–1773.CrossRefGoogle Scholar
  3. Ahmady-Asbchin, S., & Azhdehakoshpour, A. (2012). Biosorption of Cu (II) and Ni (II) ions from aqueous solution by marine brown algae Sargassum angustifolium. Journal of Biodiversity and Environmental Sciences, 6(18), 271–279.Google Scholar
  4. Akar, T., Kaynak, Z., Ulusoy, S., Yuvaci, D., Ozsari, G., & Akar, S. T. (2009). Enhanced biosorption of nickel (II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. Journal of Hazardous Materials, 163(2), 1134–1141.CrossRefGoogle Scholar
  5. Amin, F., Talpur, F. N., Balouch, A., Chandio, Z. A., Surhio, M. A., & Afridi, H. I. (2016). Biosorption of mercury (II) from aqueous solution by fungal biomass Pleurotus eryngii: isotherm, kinetic, and thermodynamic studies. Environmental Progress & Sustainable Energy, 35(5), 1274–1282.CrossRefGoogle Scholar
  6. Anastopoulos, I., & Kyzas, G. Z. (2015). Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 209, 77–86.CrossRefGoogle Scholar
  7. Apiratikul, R., & Pavasant, P. (2008). Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresource Technology, 99(8), 2766–2777.CrossRefGoogle Scholar
  8. Bağda, E., Tuzen, M., & Sarı, A. (2017). Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). Journal of Environmental Radioactivity, 175, 7–14.CrossRefGoogle Scholar
  9. Barquilha, C. E. R., Cossich, E. S., Tavares, C. R. G., & Silva, E. A. (2017). Biosorption of nickel (II) and copper (II) ions in batch and fixed-bed columns by free and immobilized marine algae Sargassum sp. Journal of Cleaner Production, 150, 58–64.CrossRefGoogle Scholar
  10. Bayramoğlu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 81(1), 35–43.CrossRefGoogle Scholar
  11. Carro, L., Barriada, J. L., Herrero, R., & de Vicente, M. E. S. (2011). Adsorptive behavior of mercury on algal biomass: competition with divalent cations and organic compounds. Journal of Hazardous Materials, 192(1), 284–291.Google Scholar
  12. Cataldo, S., Gianguzza, A., Pettignano, A., & Villaescusa, I. (2013). Mercury (II) removal from aqueous solution by sorption onto alginate, pectate and polygalacturonate calcium gel beads. A kinetic and speciation based equilibrium study. Reactive and Functional Polymers, 73(1), 207–217.CrossRefGoogle Scholar
  13. Cataldo, S., Gianguzza, A., & Pettignano, A. (2016). Sorption of Pd (II) ion by calcium alginate gel beads at different chloride concentrations and pH. A kinetic and equilibrium study. Arabian Journal of Chemistry, 9(5), 656–667.CrossRefGoogle Scholar
  14. Cazón, J. P., Viera, M., Donati, E., & Guibal, E. (2013). Zinc and cadmium removal by biosorption on Undaria pinnatifida in batch and continuous processes. Journal of Environmental Management, 129, 423–434.Google Scholar
  15. Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.CrossRefGoogle Scholar
  16. Daemi, H., & Barikani, M. (2012). Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica, 19(6), 2023–2028.CrossRefGoogle Scholar
  17. De-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611–1627.CrossRefGoogle Scholar
  18. Dönmez, G. Ç., Aksu, Z., Öztürk, A., & Kutsal, T. (1999). A comparative study on heavy metal biosorption characteristics of some algae. Process Biochemistry, 34(9), 885–892.CrossRefGoogle Scholar
  19. El-Naggar, A. Y., & Si, C. (2013). Thermal analysis of the modified and unmodified silica gels to estimate their applicability as stationary phase in gas chromatography. Journal of Emerging Trends in Engineering and Applied Sciences, 4(1), 144–148.Google Scholar
  20. Esmaeili, A., Saremnia, B., & Kalantari, M. (2015). Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arabian Journal of Chemistry, 8(4), 506–511.CrossRefGoogle Scholar
  21. Figueira, P., Lopes, C. B., Daniel-da-Silva, A. L., Pereira, E., Duarte, A. C., & Trindade, T. (2011). Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. Water Research, 45(17), 5773–5784.CrossRefGoogle Scholar
  22. Gupta, V. K., & Rastogi, A. (2006). Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—a comparative study. Colloids and Surfaces B: Biointerfaces, 64(2), 170–178.Google Scholar
  23. Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. Journal of Colloid and Interface Science, 342(2), 533–539.CrossRefGoogle Scholar
  24. Han, D. S., Orillano, M., Khodary, A., Duan, Y., Batchelor, B., & Abdel-Wahab, A. (2014). Reactive iron sulfide (FeS)-supported ultrafiltration for removal of mercury (Hg (II)) from water. Water Research, 53, 310–321.CrossRefGoogle Scholar
  25. Jafari, N., & Senobari, Z. (2012). Removal of Pb (II) ions from aqueous solutions by Cladophora rivularis (Linnaeus) hoek. Scientific World Journal, 2012.Google Scholar
  26. Ji, L., Xie, S., Feng, J., Li, Y., & Chen, L. (2012). Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal of Applied Phycology, 24(4), 979–983.Google Scholar
  27. Khoramzadeh, E., Nasernejad, B., & Halladj, R. (2013). Mercury biosorption from aqueous solutions by Sugarcane Bagasse. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 266–269.Google Scholar
  28. Kumar, J. N., & Oommen, C. (2012). Removal of heavy metals by biosorption using freshwater alga Spirogyra hyalina. Journal of Environmental Biology, 33(1), 27–31.Google Scholar
  29. Kumar, D., Pandey, L. K., & Gaur, J. P. (2016). Metal sorption by algal biomass: from batch to continuous system. Algal Research, 18, 95–109.CrossRefGoogle Scholar
  30. Lee, Y. C., & Chang, S. P. (2011). The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresource Technology, 102(9), 5297–5304.CrossRefGoogle Scholar
  31. Lohani, M. B., Singh, A., Rupainwar, D. C., & Dhar, D. N. (2008). Studies on efficiency of guava (Psidium guajava) bark as bioadsorbent for removal of Hg (II) from aqueous solutions. Journal of Hazardous Materials, 159(2), 626–629.CrossRefGoogle Scholar
  32. Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. Journal of Environmental Chemical Engineering, 1(3), 200–207.CrossRefGoogle Scholar
  33. Mishra, A., Tripathi, B. D., & Rai, A. K. (2016). Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420–428.Google Scholar
  34. Mohan, D., Gupta, V. K., Srivastava, S. K., & Chander, S. (2001). Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 177(2), 169–181.CrossRefGoogle Scholar
  35. Moreno-Garrido, I. (2008). Microalgae immobilization: current techniques and uses. Bioresource Technology, 99(10), 3949–3964.CrossRefGoogle Scholar
  36. Muzarabani, N., Mupa, M., Gwatidzo, L., & Machingauta, C. (2015). Silica gel matrix immobilized Chlorophyta Hydrodictyon africanum for the removal of methylene blue from aqueous solutions: equilibrium and kinetic studies. African Journal of Biotechnology, 14(31), 2463–2471.CrossRefGoogle Scholar
  37. Oehmen, A., Vergel, D., Fradinho, J., Reis, M. A., Crespo, J. G., & Velizarov, S. (2014). Mercury removal from water streams through the ion exchange membrane bioreactor concept. Journal of Hazardous Materials, 264, 5–70.CrossRefGoogle Scholar
  38. Parkhurst DL, & Appelo CAJ (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chap A43, p 497.Google Scholar
  39. Patel, N., Lalwani, D., Gollmer, S., Injeti, E., Sari, Y., & Nesamony, J. (2016). Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Progress in Biomaterials, 5(2), 117–133.CrossRefGoogle Scholar
  40. Petrovic, A., & Simonic, M. (2016). Removal of heavy metals from drinking water by alginate-immobilized Chlorella sorokiniana. International journal of Environmental Science and Technology, 13, 1761–1780.CrossRefGoogle Scholar
  41. Qiusheng, Z., Xiaoyan, L., Jin, Q., Jing, W., & Xuegang, L. (2015). Porous zirconium alginate beads adsorbent for fluoride adsorption from aqueous solutions. RSC Advances, 5(3), 2100–2112.Google Scholar
  42. Rezaee, A., Ramavandi, B., & Ganati, F. (2006). Equilibrium and spectroscopic studies on biosorption of mercury by algae biomass. Pakistan Journal of Biological Sciences, 9(4), 777–782.CrossRefGoogle Scholar
  43. Rocha, L. S., Lopes, C. B., Henriques, B., Tavares, D. S., Borges, J. A., Duarte, A. C., & Pereira, E. (2014). Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters. Environmental Technology, 35(6), 661–673.CrossRefGoogle Scholar
  44. Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101(1), 58–64.CrossRefGoogle Scholar
  45. Shabudeen, S. P. S., Daniel, S., & Indhumathi, P. (2013). Utilizing the pods of Delonix regia activated carbon for the removal of mercury (II) by adsorption technique. Journal of Research in Chemistry and Environment, 3, 60–65.Google Scholar
  46. Sheikha, D., Ashour, I., & Al-Rub, F. A. (2008). Biosorption of zinc on immobilized green algae: equilibrium and dynamics studies. The Journal of Engineering Research, 5(1), 20–29.CrossRefGoogle Scholar
  47. Singh, A., Mehta, S. K., Gaur, J. P. (2007). Removal of heavy metals from aqueous solution by common freshwater filamentous algae. World Journal of Microbiology and Biotechnology, 23(8), 1115–1120.Google Scholar
  48. Singh, S. K., Dixit, K., & Sundaram, S. (2014). Effect of acidic and basic pretreatment of wild algal biomass on Cr (VI) biosorption. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(5), 38–41.Google Scholar
  49. Song, D., Park, S. J., Kang, H. W., Park, S. B., & Han, J. I. (2013). Recovery of lithium (I), strontium (II), and lanthanum (III) using Ca-alginate beads. Journal of Chemical & Engineering Data, 58(9), 2455–2464.Google Scholar
  50. Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresource Technology, 99(14), 6017–6027.CrossRefGoogle Scholar
  51. Suharso, Buhani, & Sumadi. (2010). Immobilization of S. duplicatum supported silica gel matrix and its application on adsorption-desorption of Cu (II), Cd (II) and Pb (II) ions. Desalination, 263(1–3), 64–69.CrossRefGoogle Scholar
  52. Torres, E., Mata, Y. N., Blazquez, M. L., Munoz, J. A., Gonzalez, F., & Ballester, A. (2005). Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir, 21(17), 7951–7958.CrossRefGoogle Scholar
  53. Tuzen, M., Sarı, A., Mendil, D., Uluozlu, O. D., Soylak, M., & Dogan, M. (2009). Characterization of biosorption process of As (III) on green algae Ulothrix cylindricum. Journal of Hazardous Materials, 165(1), 566–572.CrossRefGoogle Scholar
  54. Urgun-Demirtas, M., Negri, M. C., Gillenwater, P. S., Nnanna, & Yu, J. (2013). Meeting world’s most stringent Hg criterion: a pilot-study for the treatment of oil refinery wastewater using an ultrafiltration membrane process. Journal of Environmental Management, 117, 65–75.CrossRefGoogle Scholar
  55. Vasudevan, S., Lakshmi, J., & Sozhan, G. (2012). Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environmental Science and Pollution Research, 19, 2734–2744.Google Scholar
  56. Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems—a literature review. Environmental Pollution, 131(2), 323–336.CrossRefGoogle Scholar
  57. Wang, S., Vincent, T., Faur, C., & Guibal, E. (2016). Alginate and algal-based beads for the sorption of metal cations: Cu (II) and Pb (II). International Journal of Molecular Sciences, 17(9), 1453.CrossRefGoogle Scholar
  58. Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817–831.CrossRefGoogle Scholar
  59. Zeroual, Y., Moutaouakkil, A., Dzairi, F. Z., Talbi, M., Chung, P. U., Lee, K., & Blaghen, M. (2003). Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresource Technology, 90(3), 349–351.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations