Advertisement

Altitudinal and Latitudinal Variations of Snowpack N Concentration over the French Alps

  • E. Dambrine
  • F. Arthaud
  • J.-N. Avrillier
  • A. Millery
  • M. Nicolas
Article
  • 59 Downloads

Abstract

The aim of the study was to get a picture of the geographical variations of N deposition in the snowpack over the French Alps. Using a collaborative research approach, we sampled 139 snow cores along 27 altitudinal gradients between 1100 and 3300 m a.s.l. in the end of February 2013, at maximum snowpack accumulation. Comparing the snowpack composition at a fixed elevation (2000 m), we observed a clear gradient of increasing nitrate concentrations from the south to the north of the massif. This gradient was less marked for NH4. Mineral N loads were 100–500 g ha−1 in the south and 100–1000 g ha−1 in the north. For several massifs of the Northern Alps, nitrate and ammonium concentrations decreased as elevation increased. This altitudinal variation was not observed (or less) in the south. The weighted average inorganic N concentrations measured in bulk precipitation during the same winter at three monitoring sites at medium altitude (1000–1300 m) were about twice higher than the measured concentrations in the snowpack at 2000 m. We suggest that these altitudinal and latitudinal gradients should be taken into account to model the deposition of N at high altitude and to analyze the relative effects of N deposition on remote alpine ecosystems.

Keywords

N deposition Snowpack Elevation French Alps Collaborative research 

Notes

Acknowledgements

We are very grateful to the group of students (Jim Felix Faure, Gabin Piton, Josepha Bleu), scientists (Jean Marcel Dorioz, Pascal Pernet, Pierre Faivre, Christian Crouzet, Sylvie Guittonneau), ecologists, and park rangers (Anne Delestrade, Julien Heuret, Patrick Perret, Fabrice Anthoine and Geoffrey Garcel) who, in addition to the authors, sampled the snowpack cautiously according to the protocol. We thank Jean Christophe Clement (USMB) for useful comments on the manuscript.

Funding Information

This work was financed by a grant of the Université Savoie-Mont Blanc.

References

  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.CrossRefGoogle Scholar
  2. Aleksic, N., Roy, K., Sistla, G., Dukett, J., Houck, N., & Casson, P. (2009). Analysis of cloud and precipitation chemistry at Whiteface Mountain, NY. Atmospheric Environment, 43(17), 2709–2716.CrossRefGoogle Scholar
  3. Atteia, O. (1994). Major and trace elements in precipitation on western Switzerland. Atmospheric Environment, 28(22), 3617–3624.CrossRefGoogle Scholar
  4. Balestrini, R., Galli, L., & Tartari, G. (2000). Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy. Atmosperic Environment, 34(9), 1455–1470.CrossRefGoogle Scholar
  5. Baron, J., & Denning, A. S. (1993). The influence of mountain meteorology on precipitation chemistry at low and high elevations of the Colorado Front Range, USA. Atmospheric Environment, 27(15), 2337–2349.CrossRefGoogle Scholar
  6. Baron, J. S., Rueth, H. M., Wolfe, A. M., Nydick, K. R., Allstott, E. J., Minear, J. T., & Moraska, B. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3(4), 352–368.CrossRefGoogle Scholar
  7. Bergström, A.-K., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Global Change Biology, 12(4), 635–643.CrossRefGoogle Scholar
  8. Blache, J. (1932). Note sur les conditions de l’inversion de température dans la région du Villard-de-Lans. Revue de Géographie Alpine, 20(2), 361–370.CrossRefGoogle Scholar
  9. Bobbink, R. K., Hicks, J., Galloway, T., Spranger, R., et al. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle Scholar
  10. Bourgeois, I., Savarino, J., Némery, J., Caillon, N., Albertin, S., Delbart, F., Voisin, D., & Clement, J.-C. (2018). Atmospheric nitrate export in streams along a montane to urban gradient. Science of The Total Environment., 633.  https://doi.org/10.1016/j.scitotenv.2018.03.141.
  11. Boutin, M., Lamaze, T., Couvidat, F., & Pornon, A. (2015). Subalpine Pyrenees received higher nitrogen deposition than predicted by EMEP and CHIMERE chemistry-transport models. Nature, Scientific Reports.  https://doi.org/10.1038/srep12942.
  12. Campbell, D. H., Baron, J. S., Tonnessen, K. A., Brooks, P. D., & Schuster, P. F. (2000). Controls on nitrogen flux in alpine/subalpine watersheds of Colorado. Water Resources, 36(1), 37–47.CrossRefGoogle Scholar
  13. Clarke N., et al. (2016) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. [http://www.icpforests.org/Manual.htm].
  14. Clement, J. C., Robson, T. M., Guillemin, R., Saccone, P., et al. (2012). The effects of snow-N deposition and snowmelt dynamics on soil-N cycling in marginal terraced grasslands in the French Alps. Biogeochemistry, 108, 297–315.CrossRefGoogle Scholar
  15. Clow, D. W., Ingersoll, G. P., Mast, M. A., Turk, J. T., & Campbell, D. H. (2002). Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition. Atmospheric Environment, 36(14), 2337–2348.CrossRefGoogle Scholar
  16. Croisé, L., Ulrich, E., Duplat, P., & Jaquet, O. (2005). Two independent methods for mapping bulk deposition in France. Atmospheric Environment, 39(21), 3923–3941.CrossRefGoogle Scholar
  17. Dore, A. J., Choularton, T. W., Fowler, D., & Crossley, A. (1992). Orographic enhancement of snowfall. Environmental Pollution, 75(2), 175–179.CrossRefGoogle Scholar
  18. Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, W., et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135–1142.CrossRefGoogle Scholar
  19. Filippa, G., Freppaz, M., Williams, M. W., & Zanini, E. (2010). Major element chemistry in inner alpine snowpacks (Aosta Valley Region, NW Italy). Cold Regions Science and Technology, 64(2), 158–166.CrossRefGoogle Scholar
  20. Hessen, D. O., Andersen, T., Larsen, S., Skjelkvåle, B. L., & de Wit, H. A. (2009). Nitrogen deposition, catchment productivity, and climate as determinants of lake stoichiometry. Limnology and Oceanography, 54, 2520–2528.CrossRefGoogle Scholar
  21. Hiltbrunner, E., Schwikowski, M., & Körner, C. (2005). Inorganic nitrogen storage in alpine snow pack in the Central Alps (Switzerland). Atmospheric Environment, 39(12), 2249–2259.CrossRefGoogle Scholar
  22. Holtgrieve, G. W., Schindler, D. E., Hobbs, W. O., et al. (2011). A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the northern hemisphere. Science, 334(6062), 1545–1548.CrossRefGoogle Scholar
  23. Hundey, E. J., Russell, S. D., Longstaffe, F. J., & Moser, K. A. (2016). Agriculture causes nitrate fertilization of remote alpine lakes. Nature Communications, 7, 10571.  https://doi.org/10.1038/ncomms10571.CrossRefGoogle Scholar
  24. Ingersoll, G. P., Mast, M. A., Campbell, D. H., Clow, D. W., Nanus, L., & Turk, J. T. (2008). Trends in snowpack chemistry and comparison to National Atmospheric Deposition Program results for the Rocky Mountains, US, 1993-2004. Atmospheric Environment, 42, 6098–6113.CrossRefGoogle Scholar
  25. Isotta et al. (2013). The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. International Journal of Climatology, 34, 1657–1675.CrossRefGoogle Scholar
  26. Kalina, M. F., Stopper, S., Zambo, E., & Puxbaum, H. (2002). Altitude-dependent wet, dry and occult nitrogen deposition in an alpine region. Environmental Science and Pollution Research, 9, 16–22.CrossRefGoogle Scholar
  27. Kopáček, J., Kana, J., Santrucková, H., Picek, T., & Stuchlík, E. (2004). Chemical and biochemical characteristics of alpine soils in the Tatra Mountains and their correlation with lake water quality. Water, Air and Soil Pollution, 153, 307–327.CrossRefGoogle Scholar
  28. Kopáček, J., Stuchlík, E., & Wright, R. F. (2005). Long-term trends and spatial variability in nitrate leaching from alpine catchment-lake ecosystems in the Tatra Mountains (Slovakia-Poland). Environmental Pollution, 136, 89–101.CrossRefGoogle Scholar
  29. Kuhn, M., Haslhofer, J., Nickus, U., & Schellander, H. (1998). Seasonal development of ion concentration in a high alpine snow pack. Atmospheric Environment, 32(23), 4041–4051.CrossRefGoogle Scholar
  30. Lepori, F., & Keck, F. (2012). Effects of atmospheric nitrogen deposition on remote freshwater ecosystems. Ambio, 41, 235–246.CrossRefGoogle Scholar
  31. Maupetit, F., & Delmas, R. J. (1994). Snow chemistry of high altitude glaciers in the French Alps. Tellus B: Chemical and Physical Meteorology, 46(4), 304–324.CrossRefGoogle Scholar
  32. Maupetit, F., Wagenbach, D., Weddeling, P., & Delmas, R. J. (1995). Seasonal fluxes of major ions to a high altitude cold alpine glacier. Atmospheric Environment, 29(1), 1–9.CrossRefGoogle Scholar
  33. Michna, P., Werner, R. A., & Eugster, W. (2015). Does fog chemistry in Switzerland change with altitude? Atmospheric Research, 151, 31–44.CrossRefGoogle Scholar
  34. Nickus, U., Kuhn, M., Baltensperger, U., Delmas, R., et al. (1997). SNOSP: Ion deposition and concentration in high alpine snow packs. Tellus B, 49(1), 56–71.CrossRefGoogle Scholar
  35. Nickus, U., Kuhn, M., Novo A., & Rossi, G.C. (1998) Major element chemistry in alpine snow along a north-south transect in the Eastern Alps. Atmospheric Environment 32,4053–4060.Google Scholar
  36. Pascaud, A., Sauvage, S., Coddeville, P., Nicolas, M., Croisé, L., Mezdour, A., & Probst, A. (2016). Contrasted spatial and long-term trends in precipitation chemistry and deposition fluxes at rural stations in France. Atmospheric Environment, 146, 28–43.CrossRefGoogle Scholar
  37. Rihm, B., & Kurz, D. (2001). Deposition and critical loads of nitrogen in Switzerland. Water, Air and Soil Pollution, 130, 1233–1238.CrossRefGoogle Scholar
  38. Rogora, M., Mosello, R., Arisci, S., et al. (2006). An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia, 562, 17–40.CrossRefGoogle Scholar
  39. Rogora, M., Colombo, L., Lepori, F., Marchetto, A., Steingruber, S., & Tornimbeni, O. (2013). Thirty years of chemical changes in alpine acid-sensitive lakes in the Alps. Water, Air, & Soil Pollution, 224(10), 1746–1766.CrossRefGoogle Scholar
  40. Rogora, M., Colombo, L., Marchetto, A., Mosello, R., & Steingruber, S. (2016). Temporal and spatial patterns in the chemistry of wet deposition in Southern Alps. Atmospheric Environment, 146, 44–54.CrossRefGoogle Scholar
  41. Rohrbough, J. A., Davis, D. R., & Bales, R. C. (2003). Spatial variability of snow chemistry in an alpine snowpack, southern Wyoming. Water Resources Research, 39(1190).Google Scholar
  42. Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., & Mauser, W. (2008). Is snow sublimation important in the alpine water balance? The Cryosphere, 2(1), 53.CrossRefGoogle Scholar
  43. Suecker, J. K., Ryan, J. N., Kendall, C., & Jarrett, R. D. (2000). Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado. Water Resource Research, 36(1), 63–75.CrossRefGoogle Scholar
  44. Thimonier, A., Schmitt, M., Waldner, P., & Rihm, B. (2005). Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environmental Monitoring and Assessment, 104, 81–118.CrossRefGoogle Scholar
  45. Throop, H. L., & Lerdau, M. T. (2004). Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems, 7, 109–133.CrossRefGoogle Scholar
  46. Ulrich, E., Coddeville, P. & Lanier, M. (2002). Retombées atmosphériques humides en France entre 1993 et 1998. Données et références. Coordination technique de la surveillance de la qualité de l’air. ADEME Editions, Paris, pp. 124Google Scholar
  47. Waldner, P., et al. (2014). Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmospheric Environment, 95, 363–374.CrossRefGoogle Scholar
  48. Wasiuta, V., Lafrenière, M. J., & Norman, A.-L. (2015). Atmospheric deposition of sulfur and inorganic nitrogen in the Southern Canadian Rocky Mountains from seasonal snowpacks and bulk summer precipitation. Journal of Hydrology, 523, 563–573.CrossRefGoogle Scholar
  49. Williams, M. W., Seibold, C., & Chowanski, K. (2009). Storage and release of solutes from a subalpine seasonal snowpack: soil and stream water response, Niwot Ridge, Colorado. Biogeochemistry, 95, 77–94.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Carrtel, INRA-USMBLe Bourget du LacFrance
  2. 2.ONFFontainebleauFrance

Personalised recommendations