Water, Air, & Soil Pollution

, 228:461 | Cite as

Tracking the Limnoecological History of Lake Hiidenvesi (Southern Finland) Using the Paleolimnological Approach

  • Tomi P. LuotoEmail author
  • Marttiina V. Rantala
  • Mira H. Tammelin


We examined a sediment record from Lake Hiidenvesi in southern Finland using paleolimnological methods to trace its limnoecological history. In our record, beginning from the 1940s, chironomid (Diptera) assemblages shifted from typical boreal taxa towards mesotrophic community assemblages at ~ 1960–1980 CE being finally replaced by eutrophic taxa from the 1990s onward. The diatom (Bacillariophyceae) assemblages reflected relatively nutrient rich conditions throughout the record showing a further increase in eutrophic taxa from the 1970s onward. A chironomid-based reconstruction of late-winter hypolimnetic dissolved oxygen (DO) conditions suggested anoxic conditions already in the 1950s, probably reflecting increased inlake production due to allochthonous nutrient inputs and related increase in biological oxygen consumption. However, the reconstruction also indicated large variability in long-term oxygen conditions that appear typical for the basin. With regard to nutrient status, chironomid- and diatom-based reconstructions of total phosphorus (TP) showed a similar trend throughout the record, although, chironomids indicated a more straightforward eutrophication process in the benthic habitat and seemed to reflect the intensified human activities in the catchment more strongly than diatoms. The DO and TP reconstructions were mostly similar in trends compared to the measured data available since the 1970s/1980s. However, the increase in TP during the most recent years in both reconstructions was not visible in the monitored data. The results of our multiproxy study emphasize the significance of including both epilimnetic and hypolimnetic systems in water quality assessments and provide important long-term limnoecological information that will be useful in the future when setting targets for restoration.


Chaoborus Chironomids Diatoms Hypolimnetic oxygen Nutrient enrichment Phosphorus 



We are grateful for the two journal reviewers for constructive criticism that helped to improve the manuscript.

Funding Information

Funding for this research was provided by the Hiidenvesi Restoration Project, the Emil Aaltonen Foundation (grant nos. 160156, 170161), and the Doctoral Program in Geosciences of the University of Helsinki.

Supplementary material

11270_2017_3622_MOESM1_ESM.xlsx (13 kb)
Suppl. 1 List of diatom species with their habitat preferences and occurrences in the Hiidenvesi sediment core. Updates in nomenclature are primarily based on Porter (2008) (XLSX 13 kb).


  1. Aagaard, K. (1982). Profundal chironomid populations during a fertilization experiment in Langvatn, Norway. Ecography, 5, 325–331.CrossRefGoogle Scholar
  2. Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Keller, W., Livingstone, D. M., Sommaruga, R., Straile, D., Van Donk, E., Weyhenmeyer, G. A., & Winder, M. (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54, 2283–2297.CrossRefGoogle Scholar
  3. Anderson, N. J. (1997). Historical changes in epilimnetic phosphorus concentrations in six rural lakes in Northern Ireland. Freshwater Biology, 38, 427–440.CrossRefGoogle Scholar
  4. Anderson, N. J. (2000). Miniview: diatoms, temperature and climatic changes. European Journal of Phycology, 35, 307–314.Google Scholar
  5. Appleby, P. G. (2001). Chronostratigraphic techniques in recent sediments. In W. M. Last & J. P. Smol (Eds.), Basin analysis, coring, and chronological techniques, tracking environmental change using lake sediments, vol. 1 (pp. 171–203). Dordrecht: Springer.Google Scholar
  6. Battarbee, R. W., Jones, V. J., Flower, R. J., Cameron, N. C., Bennion, H., Carvalho, L., & Juggins, S. (2001). Diatoms. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking environmental change using lake sediments, terrestrial, algal, and siliceous indicators, vol. 3 (pp. 155–202). Dordrecht: Kluwer Academic Publishers.Google Scholar
  7. Battarbee, R. W., Charles, D. F., Bigler, C., Cumming, B. F., & Renberg, I. (2010). Diatoms as indicators of surface-water acidity. In J. P. Smol & E. F. Stoermer (Eds.), The diatoms: applications for the environmental and earth sciences (2nd ed., pp. 98–121). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Battarbee, R. W., Anderson, N. J., Bennion, H., & Simpson, G. L. (2012). Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshwater Biology, 57, 2091–2106.CrossRefGoogle Scholar
  9. Bennion, H., Battarbee, R. W., Sayer, C. D., Simpson, G. L., & Davidson, T. A. (2011). Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. Journal of Paleolimnology, 45, 533–544.CrossRefGoogle Scholar
  10. Brodersen, K. P., & Quinlan, R. (2006). Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews, 25, 1995–2012.CrossRefGoogle Scholar
  11. Brodersen, K. P., Pedersen, O. L. E., Walker, I. R., & Jensen, M. T. (2008). Respiration of midges (Diptera; Chironomidae) in British Columbian lakes: oxy-regulation, temperature and their role as palaeo-indicators. Freshwater Biology, 53, 593–602.CrossRefGoogle Scholar
  12. Brooks, S. J., Bennion, H., & Birks, H. J. B. (2001). Tracing lake trophic history with a chironomid-total phosphorus inference model. Freshwater Biology, 46, 513–533.CrossRefGoogle Scholar
  13. Brooks, S. J., Langdon, P. G., & Heiri, O. (2007). The identification and use of palaeoarctic Chironomidae larvae in palaeoecology. QRA technical guide no. 10. London: Quaternary Research Association.Google Scholar
  14. Bryce, D., & Hobart, A. (1972). The biology and identification of the larvae of the Chironomidae (Diptera). Entomological Gazette, 23, 175–217.Google Scholar
  15. Dixit, S. S., Smol, J. P., Kingston, J. C., & Charles, D. F. (1992). Diatoms: powerful indicators of environmental change. Environmental Science and Technology, 26, 22–33.CrossRefGoogle Scholar
  16. Eggermont, H., & Heiri, O. (2012). The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews, 87, 430–456.CrossRefGoogle Scholar
  17. Ekrem, T., Reiss, F., & Langton, P. H. (1999). Tanytarsus mancospinosus sp. n.(Diptera, Chironomidae) from eutrophic lakes in Europe. Norwegian Journal of Entomology, 46, 79–88.Google Scholar
  18. Foley, B., Jones, I. D., Maberly, S. C., & Rippey, B. (2012). Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshwater Biology, 57, 278–289.CrossRefGoogle Scholar
  19. Francis, D. R. (2001). A record of hypolimnetic oxygen conditions in a temperate multi-depression lake from chemical evidence and chronomid remains. Journal of Paleolimnology, 25, 351–365.CrossRefGoogle Scholar
  20. Gibson, C. E., Anderson, N. J., & Haworth, E. Y. (2003). Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. European Journal of Phycology, 38, 83–101.CrossRefGoogle Scholar
  21. Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic carbon content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.CrossRefGoogle Scholar
  22. Hietala-Koivu, R. (2002). Landscape and modernizing agriculture: a case study of three areas in Finland in 1954–1998. Agriculture, Ecosystems and Environment, 91, 273–281.CrossRefGoogle Scholar
  23. Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432.CrossRefGoogle Scholar
  24. Hobbs, W. O., Hobbs, J. M. R., LaFrançois, T., Zimmer, K. D., Theissen, K. M., Edlund, M. B., Michelutti, N., Butler, M. G., Hanson, M. A., & Carlson, T. J. (2012). A 200-year perspective on alternative stable state theory and lake management from a biomanipulated shallow lake. Ecological Applications, 22, 1483–1496.CrossRefGoogle Scholar
  25. Hofmann, W. (1988). The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 62, 501–509.CrossRefGoogle Scholar
  26. Juggins, S. (2007). C2 version 1.5 user guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle upon Tyne: University of Newcastle.Google Scholar
  27. Kansanen, P. H. (1985). Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Annales Zoologici Fennici, 22, 57–90.Google Scholar
  28. Kansanen, P. H., Jaakkola, T., Kulmala, S., & Suutarinen, R. (1991). Sedimentation and distribution of gamma-emitting radionuclides in bottom sediments of southern Lake Päijänne, Finland, after the Chernobyl accident. Hydrobiologia, 222, 121–140.CrossRefGoogle Scholar
  29. Kauppila, T., & Valpola, S. E. (2003). Response of a shallow boreal lake to recent nutrient enrichment–implications for diatom-based phosphorus reconstructions. Hydrobiologia, 495, 47–58.Google Scholar
  30. Kauppila, T., Moisio, T., & Salonen, V. P. (2002). A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. Journal of Paleolimnology, 27, 261–273.CrossRefGoogle Scholar
  31. Krammer, K., & Lange-Bertalot, H. (1986). Bacillariophyceae. 1. Teil: Naviculaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa. Band 2/1. Stuttgart: Gustav Fischer Verlag 875 pp.Google Scholar
  32. Krammer, K., & Lange-Bertalot, H. (1988). Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa. Band 2/2. Stuttgart: Gustav Fischer Verlag 596 pp.Google Scholar
  33. Krammer, K., & Lange-Bertalot, H. (1991a). Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In H. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa. Band 2/3. Stuttgart: Gustav Fischer Verlag 576 pp.Google Scholar
  34. Krammer, K., & Lange-Bertalot, H. (1991b). Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, Gesamtliteraturverzeichnis. In H. Ettl, G. Gärtner, J. Gerlof, H. Heynig, & D. Mollenhauer (Eds.), Süsswasserflora von Mitteleuropa. Band 2/4. Stuttgart: Gustav Fischer Verlag 437 pp.Google Scholar
  35. Larocque, I. (2001). How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 133–142.CrossRefGoogle Scholar
  36. Lencioni, V., Bernabò, P., Vanin, S., Di Muro, P., & Beltramini, M. (2008). Respiration rate and oxy-regulatory capacity in cold stenothermal chironomids. Journal of Insect Physiology, 54, 1337–1342.CrossRefGoogle Scholar
  37. Liljendahl-Nurminen, A. (2006). Invertebrate predation and trophic cascades in a pelagic food web—the multiple roles of Chaoborus flavicans (Meigen) in a clay-turbid lake. PhD thesis, University of Helsinki, s. 35.Google Scholar
  38. Liljendahl-Nurminen, A., Horppila, J., Eloranta, P., Malinen, T., & Uusitalo, L. (2002). The seasonal dynamics and distribution of Chaoborus flavicans larvae in adjacent lake basins of different morphometry and degree of eutrophication. Freshwater Biology, 47, 1283–1295.CrossRefGoogle Scholar
  39. Lotter, A. F. (2001). The effect of eutrophication on diatom diversity: examples from six Swiss lakes. In R. Jahn, J. P. Kociolek, A. Witkowski, & P. Compére (Eds.), Lange-Bertalot-Festschrift, Studies on diatoms (pp. 417–432). Ruggell: A.R.G. Gantner Verlag K.G..Google Scholar
  40. Luoto, T. P. (2009). An assessment of lentic ceratopogonids, ephemeropterans, trichopterans and oribatid mites as indicators of past environmental change in Finland. Annales Zoologici Fennici, 46, 259–270.CrossRefGoogle Scholar
  41. Luoto, T. P. (2011). The relationship between water quality and chironomid distribution in Finland—a new assemblage-based tool for assessments of long-term nutrient dynamics. Ecological Indicators, 11, 255–262.CrossRefGoogle Scholar
  42. Luoto, T. P., & Nevalainen, L. (2009). Larval chaoborid mandibles in surface sediments of small shallow lakes in Finland—implications for palaeolimnology. Hydrobiologia, 631, 185–195.CrossRefGoogle Scholar
  43. Luoto, T. P., & Nevalainen, L. (2011). Inferring reference conditions of hypolimnetic oxygen for deteriorated Lake Mallusjärvi in the cultural landscape of Mallusjoki, southern Finland using fossil midge assemblages. Water, Air, & Soil Pollution, 217, 663–675.CrossRefGoogle Scholar
  44. Luoto, T. P., & Ojala, A. E. K. (2014). Paleolimnological assessment of ecological integrity and eutrophication history for Lake Tiiläänjärvi (Askola, Finland). Journal of Paleolimnology, 51, 455–468.CrossRefGoogle Scholar
  45. Luoto, T. P., & Ojala, A. E. K. (2017). Meteorological validation of chironomids as a paleotemperature proxy using varved lake sediments. The Holocene, 27, 870–878.CrossRefGoogle Scholar
  46. Luoto, T. P., & Raunio, J. (2011). A comparison of chironomid-based total phosphorus training sets developed from contemporary pupal exuviae and sedimentary larval head capsules to infer lake trophic history. Fundamental and Applied Limnology, 179, 93–102.CrossRefGoogle Scholar
  47. Luoto, T. P., & Salonen, V.-P. (2010). Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities. Boreal Environment Research, 15, 1–18.Google Scholar
  48. Luoto, T. P., Nevalainen, L., Kauppila, T., Tammelin, M., & Sarmaja-Korjonen, K. (2012). Diatom-inferred total phosphorus from dystrophic Lake Arapisto, Finland, in relation to Holocene paleoclimate. Quaternary Research, 78, 248–255.CrossRefGoogle Scholar
  49. Meriläinen, J. J., Hynynen, J., Palomäki, A., Mäntykoski, K., & Witick, A. (2003). Environmental history of an urban lake: a palaeolimnological study of Lake Jyväsjärvi, Finland. Journal of Paleolimnology, 30, 387–406.CrossRefGoogle Scholar
  50. Miettinen, J. O. (2003). A diatom-total phosphorus transfer function for freshwater lakes in southeastern Finland, including cross-validation with independent test lakes. Boreal Environment Research, 8, 215–228.Google Scholar
  51. Mörner, N. A. (1982). Gyttja. In: Beaches and coastal geology, pp. 456–457. Springer US.Google Scholar
  52. Ojala, A. E. K., Luoto, T. P., & Virtasalo, J. J. (2017). Establishing a high-resolution surface sediment chronology with multiple dating methods—testing 137Cs determination with Nurmijärvi clastic-biogenic varves. Quaternary Geochronology, 37, 32–41.CrossRefGoogle Scholar
  53. Oosterbaan, R. J. (2011). SegReg: segmented linear regression with breakpoint and confidence intervals. Google Scholar
  54. Porter, S. D. (2008). Algal attributes: an autecological classification of algal taxa collected by the National Water-Quality Assessment Program. US Geological Survey Data Series 329.Google Scholar
  55. Punning, J.-M., Kapanen, G., Hang, T., Davydova, N., & Kangus, M. (2008). Changes in the water level of Lake Peipsi and their reflection in a sediment core. Hydrobiologia, 599, 97–104.CrossRefGoogle Scholar
  56. Quinlan, R., & Smol, J. P. (2001). Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology, 46, 1529–1551.CrossRefGoogle Scholar
  57. Quinlan, R., & Smol, J. P. (2010). Use of subfossil Chaoborus mandibles in models for inferring past hypolimnetic oxygen. Journal of Paleolimnology, 44, 43–50.CrossRefGoogle Scholar
  58. Repka, S. (2005). Lake Hiidenvesi—studies on a clay-turbid and eutrophic multi-basin lake. Advances in Limnology, 59, 1–232.Google Scholar
  59. Salonen, K., Jones, R. I., & Arvola, L. (1984). Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwater Biology, 14, 431–438.CrossRefGoogle Scholar
  60. Salonen, V.P., Alhonen, P., Itkonen, A., Olander, H. (1993). The trophic history of Enäjärvi, SW Finland, with special reference to its restoration problems. Hydrobiologia, 268, 147–162.Google Scholar
  61. Small, G. E., Wares, J. P., & Pringle, C. M. (2011). Differences in phosphorus demand among detritivorous chironomid larvae reflect intraspecific adaptations to differences in food resource stoichiometry across lowland tropical streams. Limnology and Oceanography, 56, 268–278.CrossRefGoogle Scholar
  62. Smol, J. P. (2009). Pollution of lakes and rivers: a paleoenvironmental perspective. New Jersey: John Wiley & Sons.Google Scholar
  63. Tammelin, M., & Kauppila, T. (2015). Iisalmen reitin luontainen rehevyys. Vesitalous, 2, 41–44.Google Scholar
  64. Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.CrossRefGoogle Scholar
  65. Weckström, J., Väliranta, M., Kaukolehto, M., & Weckström, K. (2011). Kurkistus Hiidenveden menneisyyteen—paleolimnologinen selvitys Kirkkojärveltä ja Mustionselältä. Lohja: Länsi-Uudenmaan vesi-ja ympäristö ry.Google Scholar
  66. Wetzel, R. G. (2001). Limnology: lake and river ecosystems. Houston: Gulf Professional Publishing.Google Scholar
  67. Wiederholm, T. (1980). Use of benthos in lake monitoring. Water Pollution Control Federation, 52, 537–547.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Tomi P. Luoto
    • 1
    Email author
  • Marttiina V. Rantala
    • 2
  • Mira H. Tammelin
    • 3
  1. 1.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  2. 2.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Geography and GeologyUniversity of TurkuTurkuFinland

Personalised recommendations