Skip to main content
Log in

Immobilization of Metal Ions from Acid Mine Drainage by Coal Bottom Ash

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The removal of Cu(II), Zn(II), Mn(II), and Fe(II)/Fe(III) from acid mine drainage by using coal bottom ash was investigated at pH 4.2. Metal ion sorption, measured as amount of metal ion sorbed per gram of coal bottom ash (mg/g), was strongly influenced by the L/S (liquid-to-solid ratio), contact time, and equilibrium metal ion concentration. Metal ion sorption increased with increasing contact time as well as the equilibrium metal ion concentration and eventually reached a steady value. Sorption of a particular metal ion from a multi-component solution onto coal bottom ash was always lower as compared to sorption from the single-component solution due to the effect of competing ions. Batch sorption of metal ions onto coal bottom ash followed pseudo-second-order kinetics, while the sorption isotherm followed the Langmuir isotherm model. Removal of metal ions from single- and multi-component metal ion solutions by coal bottom ash followed the sequence: Fe(II)/Fe(III) > Cu(II) > Mn(II) > Zn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • APHA, AWWA & WEF. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association.

    Google Scholar 

  • Asokbunyarat, V., van Hullebusch, E. D., Lens, P. N. L., & Annachhatre, A. P. (2015). Coal bottom ash as sorbing material for Fe(II), Cu(II), Mn(II), and Zn(II) removal from aqueous solutions. Water Air and Soil Pollution, 226(5), 1–17.

    Article  CAS  Google Scholar 

  • Campaner, V. P., Luiz-Silva, W., & Machado, W. (2014). Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. Annals of the Brazilian Academy of Sciences, 86(2), 539–554.

    Article  CAS  Google Scholar 

  • Chaari, I., Medhioub, M., & Jamoussi, F. (2011). Use of clay to remove heavy metals from Jebel Chakir landfill leachate. Journal of Applied Sciences in Environmental Sanitation, 6(2), 143–148.

    CAS  Google Scholar 

  • Chang, L. C., Chu, H. J., & Hsiao, C. T. (2007). Optimal planning of a dynamic pump-treat-inject groundwater remediation system. Journal of Hydrology, 342(3–4), 295–304.

    Article  Google Scholar 

  • Choudhury, B. U., Malang, A., Webster, R., Mohapatra, K. P., Verma, B. C., Kumar, M., Das, A., Islam, M., & Hazarika, S. (2017). Acid drainage from coal mining: Effect on paddy soil and productivity of rice. Science of the Total Environment, 583, 344–351.

    Article  CAS  Google Scholar 

  • Costa, M. C., Martins, M., Jesus, C., & Duarte, J. C. (2008). Treatment of acid mine drainage by sulphate-reducing bacteria using low cost materials. Water Air and Soil Pollution, 189(1), 149–162.

    Article  CAS  Google Scholar 

  • Costa, J. M., Rodriguez, R. P., & Sancinetti, G. P. (2017). Removal sulfate and metals Fe+2, Cu+2, and Zn+2 from acid mine drainage in an anaerobic sequential batch reactor. Journal of Environmental Chemical Engineering, 5, 1985–1989.

    Article  CAS  Google Scholar 

  • Dean, J. A. (1999). Lange’s handbook of chemistry (15th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Demers, I., Mbonimpa, M., Benzaazoua, M., Bouda, M., Awoh, S., Lortie, S., & Gagnon, M. (2017). Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate scale field tests. Minerals Engineering, 107, 43–52.

    Article  CAS  Google Scholar 

  • Gibert, O., de Pablo, J., Cortina, J. L., & Ayora, C. (2004). Chemical characterization of natural organic substrates for biological mitigation of acid mine drainage. Water Research, 38(19), 4186–4196.

    Article  CAS  Google Scholar 

  • Gibert, O., Rotting, T., Cortina, J. L., Pablo, J. D., Ayora, C., & Carrera, J. (2011). In-situ remediation of acid mine drainage using a permeable reactive barrier in Aznalcollar (Sw Spain). Journal of Hazardous Materials, 191(1–3), 287–295.

    Article  CAS  Google Scholar 

  • Goretti, E., Pallottini, M., Ricciarini, M. I., Selvaggi, R., & Cappelletti, D. (2016). Heavy metals bioaccumulation in selected tissues of red swamp crayfish: An easy tool for monitoring environmental contamination levels. Science of the Total Environment, 559, 339–346.

    Article  CAS  Google Scholar 

  • Gorme, J. B., Maniquiz, M. C., Kim, S. S., Son, Y. G., & Kim, Y. T. (2010). Characterization of bottom ash as an adsorbent of lead from aqueous solutions. Environmental Engineering Research, 15(4), 207–213.

    Article  Google Scholar 

  • Han, Y. S., Youm, S. J., Oh, C., Cho, Y. C., & Ahn, J. S. (2017). Geochemical and eco-toxicological characteristics of stream water and its sediments affected by acid mine drainage. Catena, 148, 52–59.

    Article  CAS  Google Scholar 

  • Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355–2388.

    Article  CAS  Google Scholar 

  • Jayaranjan, M. L. D., & Annachhatre, A. P. (2013). Precipitation of heavy metals from coal ash leachate using biogenic hydrogen sulfide generated from FGD gypsum. Water Science and Technology, 67(2), 311–318.

    Article  CAS  Google Scholar 

  • Jayaranjan, M. L. D., van Hullebusch, E. D., & Annachhatre, A. P. (2014). Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Bio/Technology, 13(4), 467–486.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1–2), 3–14.

    Article  CAS  Google Scholar 

  • Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: prevention, treatment options, and resource recovery: a review. Journal of Cleaner Production, 151, 475–493.

    Article  CAS  Google Scholar 

  • Kijjanapanich, P., Pakdeerattanamint, K., Lens, P. N. L., & Annachhatre, A. P. (2012). Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage. Environmental Technology, 33(23), 2635–2644.

    Article  CAS  Google Scholar 

  • Komnitsas, K., Bartzas, G., & Paspaliaris, I. (2004a). Clean up of acidic leachates using fly ash barriers: laboratory column studies. Global Nest: The International Journal, 6(1), 81–89.

    Google Scholar 

  • Komnitsas, K., Bartzas, G., & Paspaliaris, I. (2004b). Efficiency of limestone and red mud barriers: laboratory column studies. Minerals Engineering, 17(2), 183–194.

    Article  CAS  Google Scholar 

  • Komnitsas, K., Bartzas, G., & Paspaliaris, I. (2006). Inorganic contaminant fate assessment in zero-valent iron treatment walls. Environmental Forensics, 7(3), 207–217.

    Article  CAS  Google Scholar 

  • Komnitsas, K., Bartzas, G., Fytas, K., & Paspaliaris, I. (2007). Long-term efficiency and kinetic evaluation of ZVI barriers during clean-up of copper containing solutions. Minerals Engineering, 20(13), 1200–1209.

    Article  CAS  Google Scholar 

  • Mohan, D., & Chander, S. (2001). Single component and multi-component adsorption of metal ions by activated carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2–3), 183–196.

    Article  CAS  Google Scholar 

  • Mohan, S., & Gandhimathi, R. (2009). Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. Journal of Hazardous Materials, 169(1–3), 351–359.

    Article  CAS  Google Scholar 

  • Mosti, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48.

    Google Scholar 

  • Orakwue, E. O., Asokbunyarat, V., Rene, E. R., Lens, P. N. L., & Annachhatre, A. (2016). Adsorption of iron(II) from acid mine drainage contaminated groundwater using coal fly ash, coal bottom ash, and bentonite clay. Water Air and Soil Pollution, 74, 1–12.

    Google Scholar 

  • Peiravi, M., Mote, S. R., Mohanty, M. K., & Liu, J. (2017). Bioelectrochemical treatment of acid mine drainage (AMD) from an abandoned coal mine under aerobic condition. Journal of Hazardous Materials, 333, 329–338.

    Article  CAS  Google Scholar 

  • Sawyer, C. N., Macarty, P. L., & Parkin, G. F. (2007). Chemistry for environmental engineering and science (15th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Shabalala, A. N., Ekolu, S. O., Diop, S., & Solomon, F. (2017). Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage – column study. Journal of Hazardous Materials, 323, 641–653.

    Article  CAS  Google Scholar 

  • Thiruvenkatachari, R., Vigneswaran, S., & Naidu, R. (2008). Permeable reactive barrier for groundwater remediation. Journal of Industrial and Engineering Chemistry, 14(2), 145–156.

    Article  CAS  Google Scholar 

  • Yang, J., Cao, L., Guo, R., & Jia, J. (2010). Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water. Journal of Hazardous Materials, 184(1–3), 782–787.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted from funding of the French Government under the SDCC/AIT – France Network project and the DGIS – UNESCO-IHE Programmatic Cooperation (DUPC)-funded the Evaluation of Two Technologies for Heavy Metal Removal under Tropical Conditions (EVOTEC) project from the Netherlands. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Annachhatre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asokbunyarat, V., van Hullebusch, E.D., Lens, P.N.L. et al. Immobilization of Metal Ions from Acid Mine Drainage by Coal Bottom Ash. Water Air Soil Pollut 228, 328 (2017). https://doi.org/10.1007/s11270-017-3530-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3530-2

Keywords

Navigation