Advertisement

Influence of Land Use and Sanitation Issues on Water Quality of an Urban Aquifer

  • Filipe da Silva PeixotoEmail author
  • Itabaraci Nazareno Cavalcante
  • Diolande Ferreira Gomes
Article

Abstract

In this study, we sought to determine whether there was a relationship between sanitary aspects and land use on nitrate contamination in an urban aquifer of Fortaleza city in the state of Ceará, Brazil. For this, we analyzed land use (constructed area, exposed soil, green area and lagoons) using orbital images with a special resolution of 5 m, as well as sanitary aspects (access to sewage service and use of septic tanks and rudimentary cesspits for domiciles). To study groundwater quality, we collected 30 samples to assess the physical-chemical parameters, including nitrate, nitrite and ammoniacal nitrogen. Sectors with little constructed area produce low concentrations of nitrogenic compounds. Most occupied areas had a significant influence on nitrite concentration, likely due to infiltration from runoff and the low natural recharge from atmospheric precipitation. Areas where >75% of the domiciles were linked to sewage service suffered little nitrate contamination in rainy periods, while areas where <50% of the domiciles were linked to sewage service contribute to a high level of nitrate contamination in wet periods. The study showed that land occupation and sanitation characteristics are important variables in relation to contamination in urban aquifers. Public urban land use polices that promotes the highly effective collection of sewage services and sanitation are critical for preventing urban aquifer contamination.

Keywords

Land use Sanitation aspects Groundwater Rudimentary cesspit Septic tanks 

Notes

References

  1. Alvares AC, Stape JL, Sentelhas PC, Golçalves MLJ, Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22(6):711–728CrossRefGoogle Scholar
  2. American Public Health Association – APHA (2012) Standard methods for the examination of water and wastewater. ed. 22. American Public Health Association, Washington, DCGoogle Scholar
  3. Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins: paramètres et analyses: marine ecosystem hydrology: parameters and analyses. Méthodes d’analyse en milieu marin. Editions IFREMER: Plouzané. ISBN 2-84433-133-5. 336 ppGoogle Scholar
  4. Associação Brasileira de Normas Técnicas, ABNT (1993) NBR 13.969. Tanques sépticos -Unidades de tratamento complementar e disposição final dos efluentes líquidos-Projeto, construção e operação. Rio de janeiro, p 60Google Scholar
  5. Barrett MH, Hiscock KM, Pedley S, Lerner DN, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources: a review and case study in Nottingham, UK. Wat Res 33(14):3083–3097CrossRefGoogle Scholar
  6. Bento VRS (2011) Centro e Periferia em Fortaleza Sob a Ótica das Disparidades da Infraestrutura do Saneamento Básico. Dissertação (Mestrado em Geografia). 173 f. Centro de Ciências e Tecnologia, Universidade Estadual do Ceará, FortalezaGoogle Scholar
  7. Brandão RL (1998) Diagnóstico geoambiental e os principais problemas de ocupação do meio físico da Região Metropolitana de Fortaleza. Sistema de Informações para Gestão e Administração Territorial da Região Metropolitana de Fortaleza – Projeto SINFOR: Fortaleza: CPRM. p. 88Google Scholar
  8. Burant A, Selbig W, Furlong ET, Higgins CP (2018) Trace organic contaminants in urban runoff: associations with urban land-use. Environ Pollut 242:2068–2077.  https://doi.org/10.1016/j.envpol.2018.06.066 CrossRefGoogle Scholar
  9. Campos JNB (2015) Paradigms and public policies on drought in Northeast Brazil: a historical perspective. Environ Manag 55:1052.  https://doi.org/10.1007/s00267-015-0444-x CrossRefGoogle Scholar
  10. Cavalcante IN (1998) Fundamentos Hidrogeológicos para a Gestão Integrada de Recursos Hídricos na Região Metropolitana de Fortaleza, Estado do Ceará. 1998. 153f. Tese (Doutorado em Hidrogeologia) – Instituto de Geociências, Universidade de São Paulo São PauloGoogle Scholar
  11. Ceará (1992) Plano Estadual de Recursos Hídricos. Secretaria dos Recursos Hídricos. Fortaleza: Atlas, v.1Google Scholar
  12. Chitsazan M, Tabari MMR, Eilbeigi M (2017) Analysis of temporal and spatial variations in groundwater nitrate and development of its pollution plume: a case study in Karaj aquifer. Environ Earth Sci 76(11):391–418.  https://doi.org/10.1007/s12665-017-6677-7 CrossRefGoogle Scholar
  13. Claudino-sales V (2005) Lagoas costeiras na cultura urbana da cidade de Fortaleza, Ceará. Revista da ANPEGE, 2. p 89–96CrossRefGoogle Scholar
  14. Ebrahimi S, Roberts DJ (2013) Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin. J Hazard Mater 262:539–544.  https://doi.org/10.1016/j.jhazmat.2013.09.025 CrossRefGoogle Scholar
  15. Elias D (2003) Desigualdade e Pobreza no Espaço Agrário Cearense. Mercator – Revista de Geografia da UFC 02(03):34–48Google Scholar
  16. Fetter CW (1994) Applied hydrogeology. Prentice Hall, New JerseyGoogle Scholar
  17. Ford M, Tellam JH (1994) Source, type and extent of inorganic contamination within the Birmingham urban aquifer system, UK. J Hydrol 156:101–135CrossRefGoogle Scholar
  18. Foster SSD, Chilton PJ (2004) Dowmstream of downtown: urban wastewater as groundwater recharge. Hydrogeol J 12:115–120CrossRefGoogle Scholar
  19. Gomes MCR, Cavalcante IN (2015) Geochemical analysis of groundwater in Fortaleza, Ceará – Brasil. Águas Subterrâneas 29(1):42–59.  https://doi.org/10.14295/ras.v29i1.27917 CrossRefGoogle Scholar
  20. Gomes MCR, Cavalcante IN (2017) Application of multivariate statistical analysis in the study of the quality of groundwater. Águas Subterrâneas 31(1):134–149.  https://doi.org/10.14295/ras.v31i1.28617 CrossRefGoogle Scholar
  21. Hem JD (1959) Study and interpretation of the chemical characteristics of natural water. 1. Ed. U.S.G.S. Water supply paper, 1473. 269 pGoogle Scholar
  22. Huang M, Li Y, Gu G (2010) Chemical composition of organic matters in domestic wastewater. Desalination 262:36-42. doi:10.1016/j.desal.2010.05.037CrossRefGoogle Scholar
  23. Instituto Brasileiro de Geografia e Estatística, IBGE (2011) Censo Demográfico 2010. Características da população e dos domicílios: resultados do universo. Rio de Janeiro: IBGE, Acompanha 1 CD-ROM. Disponible on: http://www.ibge.gov.br/home/estatistica/populacao/censo2010/caracteristicas_da_populacao/result ados_do_universo.pdf. Accessed 12 Mar 2017
  24. Instituto Brasileiro de Geografia e Estatística, IBGE (2018) Cidades. Fortaleza-CE. Disponible on: https://cidades.ibge.gov.br/brasil/ce/fortaleza/panorama. Accessed 23 Jul 2019
  25. Kazakis N, Voudouris KS (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. J Hydrol 525:13–25.  https://doi.org/10.1016/j.jhydrol.2015.03.035 CrossRefGoogle Scholar
  26. Lerner DN, Yang Y (2000) Quantifying recharge at the city scale using multiple environmental tracers. Conference held at Liège, Belgium, May 2000. IAHS Publ. no. 262Google Scholar
  27. Liu CW, Wang Y, Jang B, C. S. (2013) Probability-based nitrate contamination map of groundwater in Kinmen. Environ Monit Asses 185:10147–10156CrossRefGoogle Scholar
  28. Manny L, Atmaja RRS, Putra DPE (2016) Groundwater level changes in shallow aquifer of Yogyaarta City, Indonesia: Distribuition and Causes. J Appl Geol 1(2):89–99.  https://doi.org/10.22146/jag.27584 CrossRefGoogle Scholar
  29. Matiatos I (2016) Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: a case study of Asotopos basin (Central Greece). Sci Total Environ 541:802–814.  https://doi.org/10.1016/j.scitotenv.2015.09.134 CrossRefGoogle Scholar
  30. Melo JG, Vasconcelos MB, Oliveira J, Morais SDO, Celestino Júnior P, Alves RS (2010) Atualização de conhecimentos sobre a hidrogeologia e contaminação das águas subterrâneas da zona norte de natal, RN. In: XVI Congresso Brasileiro de Águas Subterrâneas, São Luiz, MA, BrasilGoogle Scholar
  31. Merkel BJ, Planer-Friedrich B, Nordstrom DK (2012) Geoquímica de águas subterrâneas: um guia prático de modelagem de sistemas aquáticos naturais e contaminados. Tradutor: Jacinta Enzweiler. Campinas, SP, Editora da UnicampGoogle Scholar
  32. Oliveira GND, Magini C, Sabadia JAB, Gomes DF, Cavalcante IN (2014) Avaliações físico-químicas e bacteriológicas das águas do Rio Maranguapinho. Região Metropolitana de Fortaleza/Ceará Revista de Geologia 27(2):139–166Google Scholar
  33. Passarello MC, Sharp JR JM, Pierce SA (2012) Estimating Urban Artificial Recharge: a case study for Austin, TX. Environmental & Engineering Geoscience 18(1):25–36Google Scholar
  34. Peixoto FS (2017) Efeitos do uso e ocupação do solo sobre as águas subterrâneas: contaminação da água subtarrânea por nitrato em subbacia urbana na cidade de Fortaleza/Brasil. 1 ed, vol 1. Omni Scriptium Publishing Group, Baue Bassin, p 125Google Scholar
  35. Peixoto FS, Cavalcante IN, Silveira RNCM, Araújo KV (2017a) Estimativa de recargas hídricas subterrâneas potenciais voluntárias e involuntárias em áreas urbanas. Águas Subterrâneas (São Paulo) 31:104–116.  https://doi.org/10.14295/ras.v31i1.28621 CrossRefGoogle Scholar
  36. Peixoto FS, Silveira RNCM, Cavalcante IN, Araujo DT, Oliveira RM (2017b) As águas subterrâneas na gestão dos recursos hídricos na bacia hidrográfica do Rio Curu – CE. Conex Ci e Tecnol Fortaleza/CE 11(1):16–21.  https://doi.org/10.21439/conexoes.v11i1.1097 CrossRefGoogle Scholar
  37. Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined sandy aquifer' water chemistry, reduction processes and geochemical modeling. Water Resour Res 27(8):2027–2045CrossRefGoogle Scholar
  38. Scalf MF, Dunlap WJ, Kreissl JF (1997) Environmental effects of the septic tanks system. U. S. Environmental agency protection, publication n. EPA-600/3-77-096Google Scholar
  39. Schirmer M, Leschik S, Musolff (2013) Current research in urban hydrogeology – a review. Adv Water Resour 51:280–291.  https://doi.org/10.1016/j.advwatres.2012.06.015 CrossRefGoogle Scholar
  40. Secretaria municipal de urbanismo e meio ambiente – SEUMA (2015) Relatório de andamento e diagnóstico do sistema de abastecimento de água. Plano municipal de saneamento básico de Fortaleza: Fortaleza, Prefeitura MunicipalGoogle Scholar
  41. Selvakumar S, Chandrasekar N, Kumar G (2017) Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resourc Ind 17:26–33.  https://doi.org/10.1016/j.wri.2017.02.002 CrossRefGoogle Scholar
  42. Silveira RNCM, Peixoto FS, Costa RNT, Cavalcante IN (2018) Drought’s impact in irrigated perimeters in the Brazilian semi-arid. Anuário do Instituto de Geociências – UFRJ 41:268–275.  https://doi.org/10.11137/2018_2_268_275 CrossRefGoogle Scholar
  43. Tubau I, Vasquez-Sunê E, Carrera J, Valhondo C, Criolo R (2017) Quantification of groundwater recharge in urban environments. Sci Total Environ 592:391–402.  https://doi.org/10.1016/j.scitotenv.2017.03.118 CrossRefGoogle Scholar
  44. Voisin J, Cournoyer B, Vienney A, Mermillod-Blondin F (2018) Aquifer recharge with stormwater runoff in urban areas: influence of vadose zone thickness on nutrient and bacterial transfers from the surface of infiltration basins to groundwater. Sci Total Environ 637–638:1496–1507.  https://doi.org/10.1016/j.scitotenv.2018.05.094 CrossRefGoogle Scholar
  45. Wilhelm SR, Schiff SL, Robertson WD (1996) Biogeochemical evolution of domestic waste water in septic systems: 2. Application of conceptual model in Sandy aquifers. Ground Water 34(5):1–12CrossRefGoogle Scholar
  46. Zhang Q, Sun J, Liu J, Huang G, Lu C, Zhang (2015) Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of South China. J Contam Hydrol 182:221–230.  https://doi.org/10.1016/j.jconhyd.2015.09.009 CrossRefGoogle Scholar
  47. Zhao Y, Zhang B, Feng C, Huang F, Zhang P, Zhang Z, Yang Y, Sugiura (2012) Behavior of autotrophic denitrification and heterotrophic denitrification in na intensifield biofilm-electrode reactor for nitrate contaminated drinking water treatment. Bioresour Techonol 107:159–165.  https://doi.org/10.1016/j.biortech.2011.12.118 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  1. 1.Departamento de GeografiaUniversidade do Estado do Rio Grande do NorteMossoróBrazil
  2. 2.Departamento de GeologiaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations