Journal of Signal Processing Systems

, Volume 91, Issue 10, pp 1191–1204 | Cite as

A Latency-Aware Multiple Data Replicas Placement Strategy for Fog Computing

  • Tiansheng Huang
  • Weiwei LinEmail author
  • Yin LiEmail author
  • LiGang He
  • ShaoLiang Peng


With the rapid increase of the number of IoT devices, transmitting big amount of data from these devices to data centers which are far away will cause problems like high latency or network congestions. Fog Computing provides a better solution for Fog-enabled latency sensitive data services to place data on Fog nodes which are closer to the data generators. However, recent studies only focus on the data placement problem of placing one single data replica to the proper Fog node. Under the situation that there are several data consumers whose topology positions are different subscribing the same data, one single data replica cannot meet the latency requirement of all the consumers. Hence, we build a multi-replica data placement model iFogStorM for Fog Computing to formulate the problem of how many data replicas need to be placed on Fog nodes and how to optimize the data placement. Furthermore, we propose a greedy algorithm based data replica placement strategy, MultiCopyStorage, to reduce the overall latency. MultiCopyStorage uses a pruning method to filter the inferior solutions calculates the overall latency and chooses the solution with the minimum overall latency as the final solution. We conducted experiments on iFogSim, a toolkit for modeling and simulation of Fog Computing, evaluated the proposed strategy with the CloudStorage strategy, Closest Node strategy, iFogStor strategy, and two kinds of heuristic strategy, iFogStorZ, and iFogStorG. The experiment result demonstrates that MultiCopyStorage strategy reduces the overall latency by 6% and 10% compared to iFogStor and iFogStorG strategy respectively. Meanwhile, execution time of the MultiCopyStorage is less than the heuristic strategy, iFogStorG and iFogStorZ, which proves that the proposed strategy can support real-time scheduling.


Data placement Fog computing Greedy algorithm Internet of things Multiple data replicas 



This work is supported by National Natural Science Foundation of China (Grant Nos. 61772205, 61872084), Science and Technology Planning Project of Guangdong Province (Grant Nos. 2017B010126002, 2017A010101008, 2017A010101014, 2017B090901061, 2016A010101018 and 2018KJYZ009), Guangzhou Science and Technology Projects (Grant Nos. 201802010010, 201807010052 and 201610010092), Nansha Science and Technology Projects (Grant No. 2017GJ001), Special Funds for the Development of Industry and Information of Guangdong Province (big data demonstrated applications) in 2017, and the young teachers training of Guangdong police officer college(2018QNGG06).


  1. 1.
    Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025 (in billions).
  2. 2.
    Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for modeling and simulation of resource management techniques in the internet of things, edge and fog computing environments. Software: Practice and Experience, 47(9), 1275–1296.Google Scholar
  3. 3.
    Wang, T., Bhuiyan, M. Z. A., Wang, G., Rahman, M. A., Wu, J., & Cao, J. (2018). Big data reduction for a smart city’s critical infrastructural health monitoring. IEEE Communications Magazine, 56(3), 128–133.CrossRefGoogle Scholar
  4. 4.
    Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing (pp. 13-16). ACM.Google Scholar
  5. 5.
    Mahmud R., Kotagiri R., & Buyya R. (2018). Fog computing: A taxonomy, survey and future directions. In Internet of everything (pp. 103–130). Singapore: Springer.Google Scholar
  6. 6.
    Fan, Y., Chen, J., Wang, L., & Cao, Z. (2016). Energy-efficient and latency-aware data placement for geo-distributed cloud data centers. In International Conference on Communications and Networking in China (pp. 465–474). Cham: Springer.Google Scholar
  7. 7.
    Zheng, P., Cui, L. Z., Wang, H. Y., & Xu, M. (2010). A data placement strategy for data-intensive applications in cloud. Jisuanji Xuebao (Chinese Journal of Computers), 33(8), 1472–1480.Google Scholar
  8. 8.
    Naas, M. I., Parvedy, P. R., Boukhobza, J., & Lemarchand, L. (2017). iFogStor: an IoT data placement strategy for fog infrastructure. In Fog and Edge Computing (ICFEC), 2017 IEEE 1st International Conference on (pp. 97-104). IEEE.Google Scholar
  9. 9.
    Naas, M. I., Lemarchand, L., Boukhobza, J., & Raipin, P. (2018). A graph partitioning-based heuristic for runtime iot data placement strategies in a fog infrastructure. In SAC 2018: Symposium on Applied Computing.Google Scholar
  10. 10.
    CPLEX, I. I. (2009). V12. 1: User’s manual for CPLEX. International Business Machines Corporation, 46(53), 157.Google Scholar
  11. 11.
    Mahmud, R., Ramamohanarao, K., & Buyya, R. (2018). Latency-aware application module management for Fog computing environments. ACM Transactions on Internet Technology, 19(1). Scholar
  12. 12.
    Taneja, M., & Davy, A. (2017). Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Integrated Network and Service Management (IM), 2017 IFIP/IEEE Symposium on (pp. 1222-1228). IEEE.Google Scholar
  13. 13.
    Mahmud, R., Srirama, S. N., Ramamohanarao, K., & Buyya, R. (2018). Quality of Experience (QoE)-aware placement of applications in Fog computing environments. Journal of Parallel and Distributed Computing. Scholar
  14. 14.
    Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1), 1–13.CrossRefGoogle Scholar
  15. 15.
    Achterberg, T. (2009). SCIP: solving constraint integer programs[J]. Mathematical Programming Computation, 1(1), 1–41.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., & Leitner, P. (2017). Optimized IoT service placement in the fog. Service Oriented Computing and Applications, 11(4), 427–443.CrossRefGoogle Scholar
  17. 17.
    Sun, Y., Lin, F., & Xu, H. (2018). Multi-objective optimization of resource scheduling in Fog computing using an improved NSGA-II. Wireless Personal Communications, 102, 1369–1385.CrossRefGoogle Scholar
  18. 18.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  19. 19.
    Wang, T., Zhou, J., Liu, A., Bhuiyan, M. Z. A., Wang, G., & Jia, W. (2018). Fog-based computing and storage offloading for data synchronization in IoT. IEEE Internet of Things Journal. Scholar
  20. 20.
    Wei-Wei, L. (2012). An improved data placement strategy for Hadoop. Journal of South China University of Technology (Natural Science Edition), 1, 028.Google Scholar
  21. 21.
    Wu, J., Chen, L., Wang, X., Jiang, G., Lam, S. K., & Srikanthan, T. (2017). Algorithms for replica placement and update in tree network. The Computer Journal, 61(2), 273–287.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lizhen, L. C., Zhang, J., Yue, L., Shi, Y., Li, H., & Yuan, D. A genetic algorithm based data replica placement strategy for scientific applications in clouds. IEEE Transactions on Services Computing, 11(4), 727–739.Google Scholar
  23. 23.
    Rajaretnam, K., Rajkumar, M., & Venkatesan, R. (2016). Rplb: A replica placement algorithm in data grid with load balancing. International Arab Journal of Information Technology (IAJIT), 13(6).Google Scholar
  24. 24.
    Gai, K., Qiu, M., & Zhao, H. (2016). Cost-aware multimedia data allocation for heterogeneous memory using genetic algorithm in cloud computing. IEEE Transactions on Cloud Computing.
  25. 25.
    Qiu, M., Chen, Z., Ming, Z., Qin, X., & Niu, J. (2017). Energy-aware data allocation with hybrid memory for mobile cloud systems. IEEE Systems Journal, 11(2), 813–822.CrossRefGoogle Scholar
  26. 26.
    Qiu, M., & Sha, E. H. M. (2009). Cost minimization while satisfying hard/soft timing constraints for heterogeneous embedded systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 14(2), 25.CrossRefGoogle Scholar
  27. 27.
    Naas, M. I., Boukhobza, J., Parvedy, P. R., & Lemarchand, L. (2018). An Extension to iFogSim to Enable the Design of Data Placement Strategies. In Fog and Edge Computing (ICFEC), 2018 IEEE 2nd International Conference on (pp. 1-8). IEEE.Google Scholar
  28. 28.
    Schrage, L. E. (2006). Optimization modeling with LINGO. Chicago: Lindo System.Google Scholar
  29. 29.
    Wang, T., Zhang, G., Liu, A., Bhuiyan, M. Z. A., & Jin, Q. (2018). A secure IoT service architecture with an efficient balance dynamics based on cloud and edge computing. IEEE Internet of Things Journal. Scholar
  30. 30.
    Wang, T., Zhou, J., Huang, M., Bhuiyan, M. Z. A., Liu, A., Xu, W., & Xie, M. (2018). Fog-based storage technology to fight with cyber threat. Future Generation Computer Systems, 83, 208–218.CrossRefGoogle Scholar
  31. 31.
    Hu, F., Qiu, M., Li, J., Grant, T., Taylor, D., McCaleb, S., et al. (2011). A review on cloud computing: Design challenges in architecture and security. Journal of Computing and Information Technology, 19(1), 25–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.Institute of Software Application TechnologyGuangzhou & Chinese Academy of SciencesGuangzhouChina
  3. 3.Department of Computer ScienceUniversity of WarwickCoventryUK
  4. 4.College of Computer Science and Electronic Engineering & National Supercomputing Centre in ChangshaHunan UniversityChangshaChina
  5. 5.School of Computer ScienceNational University of Defense TechnologyChangshaChina

Personalised recommendations