Advertisement

Performance and ASIC Designs of the K-best LSD and LMMSE Detectors for LTE Downlink

  • Essi SuikkanenEmail author
  • Markku Juntti
Article
  • 11 Downloads

Abstract

We consider performance comparison and application specific integrated circuit (ASIC) designs of linear minimum mean-square error (LMMSE) and K-best list sphere detector (LSD) algorithms for 4 × 4 and 8 × 8 multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. Requirements for higher data rate and lower power consumption set new challenges for implementation. In order to minimize the power consumption, an optimal detector would be able to switch the detection algorithm to suit the channel conditions. The detectors are designed for three different modulation schemes using 28 nm complementary metal oxide semiconductor (CMOS) technology. The communications performance is evaluated in the Third Generation Partnership Project (3GPP) Long-Term Evolution (LTE) system. The impact of transmit precoding is considered. The ASIC designs aim at providing the hardware design aspects to the comparison of detectors. The designs are synthesized and complexity and power consumption results are found. Based on the ASIC synthesis and communications performance results, we show the performance–energy efficiency and performance–complexity comparison. We also present the most suitable scenarios for a low-power detector and show how the transmit precoding impacts the detector selection.

Keywords

LTE MIMO–OFDM Adaptive detection LMMSE K-best LSD ASIC 

Notes

References

  1. 1.
    (2010). 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network, “Evolved universal terrestrial radio access E-UTRA; physical channels and modulation (release 10) TS 36.211 (version 10.0.0),” Tech. Rep.Google Scholar
  2. 2.
    Onggosanusi, E.N., Dabak, A.G., Hosur, S. (2006). Multimode detection. Patent U.S. 2006/0018410 A1.Google Scholar
  3. 3.
    Shen, H., Zhang, H., Zhao, C. (2011). An efficient adaptive receiver for MIMO? OFDM systems In Proceedings of the international conference on wireless communications and signal processing (pp. 1–5).Google Scholar
  4. 4.
    Chen, X., Minwegen, A., Hassan, Y., Kammler, D., Li, S., Kempf, T., Chattopadhyay, A., Ascheid, G. (2012). FLEXDET: Flexible, efficient multi-mode MIMO detection uding reconfigurable ASIP. In Proc. Int. Symb. on Field-progr. Custom Comp. machines, (Vol 3 pp. 69–76).Google Scholar
  5. 5.
    Chen, X., Minwegen, A., Hussain, S.B., Chattopadhyay, A., Ascheid, G., Leupers, R. (2015). Flexible, efficient multimode MIMO detection by using reconfigurable ASIP. IEEE Trans. VLSI, Syst., 23(10), 2173–2186.CrossRefGoogle Scholar
  6. 6.
    Sheikh, F., Chen, C. -H., Yoon, D., Alexandrov, B., Bowman, K., Chun, A., Alavi, H., Zhang, Z. (2014). 3.2 Gbps channel-adaptive configurable MIMO detector for multi-mode wireless communication. In Proceedings of the IEEE Works. on Sign. Proc. Syst. (pp. 1–6). Northern Ireland: Belfast.Google Scholar
  7. 7.
    (2013). 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network,“Evolved universal terrestrial radio access E-UTRA; physical layer procedures (release 11) TS 36.213 (version 11.2.0),” Tech. Rep.Google Scholar
  8. 8.
    Yoshizawa, S., Miyazaki, N., Nakagawa, D., Miyanaga, Y. (2011). A low-power adaptive MIMO detector for MIMO–OFDM WLAN systems. In Proc. annual Conf. Asia-pacific signal and information processing association (pp. 2486–2489). Xi’an.Google Scholar
  9. 9.
    Suikkanen, E., & Juntti, M. (2014). Study of adaptive detection and channel estimation for MIMO–OFDM systems. In Springer Wireless Pers. Commun. Google Scholar
  10. 10.
    Suikkanen, E., Janhunen, J., Shahabuddin, S., Juntti, M. (2013). Study of adaptive detection for MIMO–OFDM systems. In Proc. Int. Symp. on System-on-Chip (pp. 1–4). Tampere.Google Scholar
  11. 11.
    Suikkanen, E., Ketonen, J., Juntti, M. (2014). Detection and channel estimation in 88 MIMO–OFDM. In Proc. IEEE Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (pp. 299–304). Oulu.Google Scholar
  12. 12.
    Suikkanen, E., & Juntti, M. (2015). ASIC implementation and performance comparison of adaptive detection for MIMO–OFDM system. In Proc. annual Asilomar Conf. signals, Syst., Comp. (pp. 1632–1636). Pacific Grove.Google Scholar
  13. 13.
    Artes, H., Seethaler, D., Hlawarsch, F. (2003). Efficient detection algotihms for MIMO channels: a geometrical approach to approximate ML detection. IEEE Transactions on Signal Processing, 51(11), 2808–2820.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wong, K., Tsui, C., Cheng, R.-K., Mow, W. (2002). A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. In Proc. IEEE Int. Symp. on Circuits and Systems, (Vol 3 pp. 273–276). Scottsdale.Google Scholar
  15. 15.
    Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., Bölcskei, H. (2005). VLSI implementation of MIMO detection using the sphere decoding algorithm. IEEE Journal Solid-State Circuits, 40(7), 1566–1577.CrossRefGoogle Scholar
  16. 16.
    Barbero, L.G., & Thompson, J.S. (2006). FPGA design considerations in the implementation of a fixed-throughput sphere decoder for MIMO systems. In Int. Conf. on field programmable logic and applications (pp. 1–6). Sydney.Google Scholar
  17. 17.
    Wu, B., & Masera, G. (2012). Efficient VLSI implementation of soft-input soft-output fixed-complexity sphere decoder. IET Communications, 6(9), 1111–1118.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Myllylä, M., Juntti, M., Cavallaro, J. (2010). Implementation aspects of list sphere decoder algorithms for MIMO–OFDM systems. Signal Processing, Elsevier, 90(10), 2863–2876.CrossRefGoogle Scholar
  19. 19.
    Wübben, D., Böhnke, R., Kühn, V., Kammeyer, K. (2003). MMSE extension of v-BLAST based on sorted QR decomposition. In Proceedings of IEEE Veh. Technol. Conf., (Vol. 1 pp. 508–512). Orlando.Google Scholar
  20. 20.
    Ozdemir, M.K., & Arslan, H. (2007). Channel estimation for wireless OFDM systems. IEEE Communications Surveys & Tutorials, 9(2), 18–48.CrossRefGoogle Scholar
  21. 21.
    Meidlinger, M., & Wang, Q. (2012). Performance evaluation of LTE advanced downlink channel estimation. In Proc. Int. Conf. on Syst., Sign. and image Proc., (Vol. 252–255), Vienna.Google Scholar
  22. 22.
    Lin, S., Costello, D.J. Jr, Miller, M.J. (1984). Automatic-repeat-request error-control scheme. IEEE Transactions on Magnetics, 22(12), 5–17.Google Scholar
  23. 23.
    Chase, D. (1985). Code combining – a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets. IEEE Transactions on Communications, 33(5), 385–393.MathSciNetCrossRefGoogle Scholar
  24. 24.
    ZTE. (2009). R1-091716 DL codebook design for 8 Tx MIMO in LTE-A. 3rd Generation Partnership Project (3GPP) TSG RAN WG1 Meeting 57, San Francisco, USA, Tech. Rep.Google Scholar
  25. 25.
    (2002). 3rd Generation Partnership Project (3GPP); Technical Specification Group Radio Access Network. Radio transmission and reception (3G TS 45.005 version 5.4.0 (release 5)). 3rd Generation Partnership Project (3GPP), Tech. Rep.Google Scholar
  26. 26.
    Cadence Design Systems Datasheet. (2016). Cadence Cto-silicon compiler. [Online]. Available: http://www.cadence.com/products/sd/siliconcompiler/pages/default.aspx, accessed: Mar. 17, 2016.
  27. 27.
    Synopsys Design Compiler Datasheet. (2016). Synopsys design compiler 2010. [Online]. Available:http://www.synopsys.com/Tools/Implementation/RTLSynthesis/Pages/default.aspx, accessed: Mar. 17, 2016.
  28. 28.
    Ketonen, J., Juntti, M., Cavallaro, J.R. (2010). Performance-complexity comparison of receivers for a LTE MIMO–OFDM system. IEEE Transactions on Signal Processing, 58(6), 3360–3372.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gestner, B., & Anderson, D.V. (2008). Single Newton-Raphson iteration for integer-rounded divider for lattice reduction algorithms. In IEEE 51st Midwest Symp. on Circ. and Syst. (Vol. 2), Knoxville.Google Scholar
  30. 30.
    Golub, G.H., & Van Loan, C.F. (1996). Matrix Computations, 3rd edn. Baltimore: The Johns Hopkins University Press.zbMATHGoogle Scholar
  31. 31.
    Damen, M.O., El gamal, H., Caire, G. (2003). On maximum–likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory, 49(10), 2389–2402.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Myllylä, M., Antikainen, J., Juntti, M., Cavallaro, J.R. (2007). The effect of LLR clipping to the complexity of list sphere detector algorithms. In Proc. Annual Asilomar Conf. signals, Syst., Comp. (pp. 1559–1563). Pacific Grove.Google Scholar
  33. 33.
    El-Amawy, A., & Dharmarajan, K.R. (1989). Parallel VLSI algorithm for stable inversion of dense matrices. Computers and Digital Techniques, IEE Proceedings E, 136(6), 575–580.CrossRefGoogle Scholar
  34. 34.
    Collings, I., Butler, M.R.G., McKay, M. (2004). Low complexity receiver design for MIMO bit-interleaved coded modulation. In Proc. IEEE Int. Symp. spread spectrum techniques and applications (pp. 1993–1997). Sydney.Google Scholar
  35. 35.
    Suikkanen, E., Ketonen, J., Juntti, M. (Aug. 2012). Transmission adaptation. International PCT Patent Application No PCT/EP2012/066573.Google Scholar
  36. 36.
    Maurer, J., Matz, G., Seethaler, D. (2007). Low-complexity and full-diversity MIMO detection based on condition number thresholding. In Proc. IEEE Int. Conf. Acoust., speech, signal processing, (Vol. 3, pp. 61–64). Honolulu.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Keysight Technologies Finland OyOuluFinland
  2. 2.Centre for Wireless CommunicationsUniversity of OuluOuluFinland

Personalised recommendations