Advertisement

Journal of Signal Processing Systems

, Volume 91, Issue 1, pp 9–20 | Cite as

Image Restoration in Portable Devices: Algorithms and Optimization

  • Jan KamenickýEmail author
  • Filip Šroubek
  • Barbara Zitová
  • Jari Hannuksela
  • Markus Turtinen
Article
  • 57 Downloads

Abstract

Image and video data acquired by portable devices such as mobile phones are degraded by noise and blur due to the small size of optical sensors in these devices. A wide range of image restoration methods exists, yet feasibility of these methods in portable platforms is not guaranteed due to limited hardware resources on such platforms. The paper addresses this problem by focusing on denoising algorithms. We have chosen two representatives of denoising methods with state-of-the-art performance, and propose different parallel implementations and algorithmic simplifications suitable for mobile phones. In addition, an extension to resolution enhancement is presented including both visual and quantitative comparisons. Analysis of the algorithms is carried out with respect to the computation time, power consumption and output image quality.

Keywords

Image restoration Denoising Super-resolution Numerical optimization Portable devices 

Notes

Acknowledgments

This work was supported by ARTEMIS JU project 621439 (ALMARVI) and partially also by the Czech Science Foundation project GA18-05360S.

References

  1. 1.
    Bordallo López, M., Nieto, A., Boutellier, J., Hannuksela, J., Silvén, O. (2014). Evaluation of real-time lbp computing in multiple architectures. Journal of Real-Time Image Processing, 1–22.Google Scholar
  2. 2.
    Buades, A., & Coll, B. (2005). A non-local algorithm for image denoising. In Computer vision and pattern recognition (CVPR) (pp. 60–65).Google Scholar
  3. 3.
    Buckler, M., Jayasuriya, S., Sampson, A. (2017). Reconfiguring the imaging pipeline for computer vision. In IEEE International conference on computer vision (ICCV) (pp. 975–984).Google Scholar
  4. 4.
    Burger, H.C., Schuler, C.J., Harmeling, S. (2012). Image denoising: can plain neural networks compete with BM3D? In Computer vision and pattern recognition (CVPR) (pp. 2392–2399).Google Scholar
  5. 5.
    Chatterjee, P., & Milanfar, P. (2010). Is denoising dead? IEEE Transactions on Image Processing, 19(4), 895–911.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 16(8), 2080–2095.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.  https://doi.org/10.1109/TIP.2006.881969.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farsiu, S., Robinson, M., Elad, M., Milanfar, P. (2004). Fast and robust multiframe super resolution. IEEE Transactions on Image Processing, 13(10), 1327–1344.CrossRefGoogle Scholar
  9. 9.
    Fortun, D., Bouthemy, P., Kervrann, C. (2015). Optical flow modeling and computation: a survey. Computer Vision and Image Understanding, 134, 1–21.CrossRefGoogle Scholar
  10. 10.
    Goossens, B., Luong, H., Aelterman, J., Pižurica, A., Philips, W. (2010). A GPU-accelerated real-time NLMeans algorithm for denoising color video sequences, (pp. 46–57). Berlin: Springer.Google Scholar
  11. 11.
    Grasso, I., Radojkovic, P., Rajovic, N., Gelado, I., Ramirez, A. (2014). Energy efficient hpc on embedded socs: optimization techniques for Mali gpu. In 2014 IEEE 28th International parallel and distributed processing symposium (pp. 123–132).Google Scholar
  12. 12.
    Hannuksela, J., Niskanen, M., Turtinen, M. (2015). Performance evaluation of image noise reduction computing on a mobile platform. In 2015 International conference on embedded computer systems: architectures, modeling, and simulation (SAMOS) (pp. 332–337).Google Scholar
  13. 13.
    Lebrun, M., Buades, A., Morel, J.M. (2013). A nonlocal Bayesian image denoising algorithm. SIAM Journal on Imaging Sciences, 6(3), 1665–1688.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Levin, A., & Nadler, B. (2011). Natural image denoising: optimality and inherent bounds. In Computer vision and pattern recognition (CVPR) (pp. 2833–2840).Google Scholar
  15. 15.
    Liu, C. (2009). Beyond pixels: exploring new representations and applications for motion analysis. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  16. 16.
    Márques, A., & Pardo, A. (2013). Implementation of non local means filter in GPUs, (pp. 407–414). Berlin: Springer.Google Scholar
  17. 17.
    Palma, G., Comerci, M., Alfano, B., Cuomo, S., Michele, P.D., Piccialli, F., Borrelli, P. (2013). 3d non-local means denoising via multi-gpu. In 2013 Federated conference on computer science and information systems (pp. 495–498).Google Scholar
  18. 18.
    Šroubek, F., Cristobal, G., Flusser, J. (2007). A unified approach to superresolution and multichannel blind deconvolution. IEEE Transactions on Image Processing, 16(9), 2322–2332.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Šroubek, F., Flusser, J., Cristóbal, G. (2009). Super-resolution and blind deconvolution for rational factors with an application to color images. The Computer Journal, 52, 142–152.CrossRefGoogle Scholar
  20. 20.
    Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21, 977–1000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Czech Academy of SciencesInstitute of Information Theory and AutomationPrague 8Czech Republic
  2. 2.Visidon LtdOuluFinland

Personalised recommendations