Auto-regularized Gradients of Adaptive Interpolation for MRI Super-Resolution

  • Leandro Morera DelfinEmail author
  • Raul Pinto Elias
  • Humberto de Jesús Ochoa Domínguez
  • Osslan Osiris Overgara Villegas


In this paper, a method for adaptive pure interpolation (PI) of magnetic resonance imaging (MRI) in the frequency domain, with gradient auto-regularization, is proposed. The input image is transformed into the frequency domain and convolved with the Fourier transform (FT) of a 2D sampling array (interpolation kernel) of initial LxM size. The inverse Fourier transform (IFT) is applied to the output coefficients and the edges are detected and counted. To get a denser kernel the sampling array is interpolated in the frequency domain and convolved again with the transform coefficients of the original MRI image of low resolution and transformed back into the spatial domain. The process is repeated until a maximum count of edges is reached in the output image, indicating that a local optimum magnification factor has been attained. Finally, the edges are sharpened by using an auto-regularization method. Our procedure is deterministic and independent of external information of large databases of other MRI images for obtain the high resolution output image. The proposed system improves the bi-cubic interpolation method by a mean of 3dB in peak of signal-to-noise ratio (PSNR) and until 6 dB in the best case. The structural similarity index measure (SSIM) is improved over bicubic interpolation with a mean of 0.04 and until 0.08 in the best case. It is a significant result respect to novel algorithms reported in the state of the art.


Super-resolution MRI Pure interpolation Auto-regularized gradients 



  1. 1.
    Bloch, F. (1946). Nuclear induction. Physical Reviews, 70(7-8), 460–473.CrossRefGoogle Scholar
  2. 2.
    Purcell, E., Torrey, H., Pound, R. (1946). Resonance absorption by nuclear magnetic moments in a solid. Physical Reviews, 69(1-2), 37–38.CrossRefGoogle Scholar
  3. 3.
    Mayer, G., & Vrscay, E. (2007). Measuring Information Gain for Frequency- Encoded Super-resolution MRI. Magnetic Resonance Imaging, 25(7), 1058–1069.CrossRefGoogle Scholar
  4. 4.
    Plenge, E., Poot, D., Bernsen, M., Kotek, G., Houston, G., Wielopolsski, P., et al. (2012). Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? Magnetic Resonance in Medicine, 68(6), 1983–1993.CrossRefGoogle Scholar
  5. 5.
    Tieng, Q., Cowin, G., Reutens, D., Galloway, G., Vegh, V. (2011). MRI Resolution Enhancement: How Useful are Shifted images Obtained by Changing the Demodulation requency? Magnetic Resonance in Medicine, 65(3), 664–672.CrossRefGoogle Scholar
  6. 6.
    Wanga, Y., Qiao, J., Li, J., Fu, P., Chu, S., Roddick, J. (2014). Sparse representation-based MRI super-resolution reconstruction. Measurement, 47, 946–953.CrossRefGoogle Scholar
  7. 7.
    Ashikawa, H., Estner, H., Herzka, D., Mcveigh, E., Halperin, H. (2014). Quantitative assessment of single-image super-resolution in myocardial scar imaging. IEEE Journal of Translation Engineering Health Medicine, 2, 1–12.CrossRefGoogle Scholar
  8. 8.
    Lu, X., Huang, Z., Yuan, Y. (2015). MR image super-resolution via manifold regularized sparse learning. Neurocomputing, 162, 96–104.CrossRefGoogle Scholar
  9. 9.
    Frakes, D., Dasi, L., Pekkan, K., Kitajima, H., Sundareswaran, K., Yoganathan, A., et al. (2008). A new method for registration-based medical image interpolation. IEEE Transactions on Medical Imaging, 27(3), 370–377.CrossRefGoogle Scholar
  10. 10.
    Calamante, F., Tournier, J., Jackson, G., Connelly, A. (2010). Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage, 53(4), 1233–1243.CrossRefGoogle Scholar
  11. 11.
    Du, B., & Zhang, L. (2011). Random-Selection-Based Anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote, 49(5), 1578–1589.CrossRefGoogle Scholar
  12. 12.
    Carmi, E., Liu, S., Alon, N., Fiat, A., Fiat, D. (2006). Resolution enhancement in MRI. Magnetic Resonance Imaging, 24(2), 133–154.CrossRefGoogle Scholar
  13. 13.
    Gholipour, A., Estroff, J., Warfield, S. (2010). Robust super-resolution volume reconstruction from slice acquisitions: Application to fetal brain MRI. IEEE Transactions on Medical Imaging, 29(10), 1739–1758.CrossRefGoogle Scholar
  14. 14.
    Tao, D., Lin, X., Jin, L., Li, X. (2016). Principal Component 2-D Long Short-Term Memory for Font Recognition on Single Chinese characters. IEEE Transactions on Cybernetics, 46(3), 756–765.CrossRefGoogle Scholar
  15. 15.
    Chen, S., Hong, X., Harris, C., Sharkey, P. (2004). Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Transactions on Systems Man and Cybernetics Part B, 34 (2), 898–911.CrossRefGoogle Scholar
  16. 16.
    Tao, D., Li, X., Wu, X., Maybank, S. (2007). General tensor discriminant analysis and gabor eatures for gait recognition. IEEE Transactions on Pattern Analysis, 29(10), 1700–1715.CrossRefGoogle Scholar
  17. 17.
    Zhi, R., Flierl, M., Ruan, Q., Kleijn, W. (2011). Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition. IEEE Transactions on Systems Man and Cybernetics Part B, 41 (1), 38–52.CrossRefGoogle Scholar
  18. 18.
    Sun, J., Sun, J., Xu, Z., Shum, H.Y. (2011). Gradient profile prior and its applications in image Super-Resolution and enhancement. IEEE Transactions on Image Processing, 20(6), 1529–1542.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, L., Xiang, S., Meng, G., Wu, H., Pan, C. (2013). Edge-Directed Single-Image Super-Resolution Via adaptive gradient magnitude Self-Interpolation. IEEE Transactions on Circuits and Systems for Video, 23(8), 1289–1299.CrossRefGoogle Scholar
  20. 20.
    Leng, J., Xu, G., Zhang, Y. (2013). Medical image interpolation based on multi-resolution registration. Computers & Mathematics with Applications, 66(1), 1–18.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, K., Gao, X., Li, J., Xia, H. (2016). Single image super-resolution using regularization of non-local steering kernel regression. Signal Processing, 123, 53–63.CrossRefGoogle Scholar
  22. 22.
    Gunaseelan, K., & Seethalachmi, E. (2013). Image resolution and contrast enhancement using singular value and discrete wavelet decomposition. Journal of Scientific & Industrial Research, 72(1), 31–35.Google Scholar
  23. 23.
    Greenspan, H. (2009). Super-resolution in medical imaging. The Computer Journal, 52(1), 43–63.CrossRefGoogle Scholar
  24. 24.
    Van, E., Tham, I., Heng, C., Loo, C. (2012). Super-resolution in magnetic resonance imaging: A review. Concepts in Magnetic Resonance Part A, 40, 306–325.Google Scholar
  25. 25.
    Rousseau, F. (2010). A non-local approach for image super-resolution using intermodality priors. Medical Image Analysis, 14(4), 594–605.CrossRefGoogle Scholar
  26. 26.
    Rousseau, F., Kim, K., Studholme, C., Koob, M., Dietemann, J. (2010). On super-resolution for fetal brain MRI. Medical Image Computing and Computer-Assisted Intervention, 6362, 355–362.Google Scholar
  27. 27.
    Rueda, A., Malpica, N., Romero, E. (2013). Single-image super-resolution of Brain MR images using overcomplete dictionaries. Medical Image Analysis, 17(1), 113–132.CrossRefGoogle Scholar
  28. 28.
    Papoulis, A. (1966). Systems and transforms with applications in optics, 1st edn., (p. 105). New York: McGraw-Hill.Google Scholar
  29. 29.
    Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis, 8 (6), 679–698.CrossRefGoogle Scholar
  30. 30.
    Trinh, D., Luong, M., Dibos, J., Rocchisani, C. (2014). Novel example-based method for super-resolution and denoising of medical images. IEEE Transactions on Image Processing, 23(4), 1882–1895.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ahmadi, K., & Salari, E. (2015). Edge-preserving MRI super resolution using a high frequency regularization technique. IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5.Google Scholar
  32. 32.
    Zhang, Y., Liu, J., Yang, W., Guo, Z. (2015). Image super-resolution based on structure-modulated sparse representation. IEEE Transactions on Image Processing, 24(9), 2797–2810.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sun, Y., Gu, G., Sui, X., Liu, Y. (2016). Compressive superresolution imaging based on local and nonlocal regularizations. IEEE Photonics Journal, 8(1), 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leandro Morera Delfin
    • 1
    Email author
  • Raul Pinto Elias
    • 1
  • Humberto de Jesús Ochoa Domínguez
    • 2
  • Osslan Osiris Overgara Villegas
    • 2
  1. 1.CENIDETCuernavacaMexico
  2. 2.UACJC JuarezMexico

Personalised recommendations