Advertisement

Journal of Signal Processing Systems

, Volume 91, Issue 1, pp 93–113 | Cite as

Tools and Techniques for Implementation of Real-time Video Processing Algorithms

  • Vecdi Emre Levent
  • Aydin E. Guzel
  • Mustafa Tosun
  • Mert Buyukmihci
  • Furkan Aydin
  • Sezer Gören
  • Cengiz Erbas
  • Toygar Akgün
  • H. Fatih UgurdagEmail author
Article
  • 134 Downloads

Abstract

This paper describes flexible tools and techniques that can be used to efficiently design/generate quite a variety of hardware IP blocks for highly parameterized real-time video processing algorithms. The tools and techniques discussed in the paper include host software, FPGA interface IP (PCIe, USB 3.0, DRAM), high-level synthesis, RTL generation tools, synthesis automation as well as architectural concepts (e.g., nested pipelining), an architectural estimation tool, and verification methodology. The paper also discusses a specific use case to deploy the mentioned tools and techniques for hardware design of an optical flow algorithm. The paper shows that in a fairly short amount of time, we were able to implement 11 versions of the optical flow algorithm running on 3 different FPGAs (from 2 different vendors), while we generated and synthesized several thousand designs for architectural trade-off.

Keywords

Hardware IP generation Real-time video processing High-level synthesis FPGA Optical flow Nested pipelining 

Notes

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) through project no. 114E343 as well as European Union’s Artemis Joint Undertaking as part of project named ALMARVI (Grant Agreement 621439).

References

  1. 1.
    Wang, R., Hamilton, T.J., Tapson, J., van Schai, A. (2014). An FPGA design framework for large-scale spiking neural networks. In Proceedings of IEEE international symposium on circuits and systems (ISCAS).Google Scholar
  2. 2.
    Nurvitadhi, E., Weisz, G., Wang, Y., Hurkat, S., Nguyen, M., Hoe, J.C., Martínez, J. F., Guestrin, C. (2014). Graphgen: An FPGA framework for vertex-centric graph computation. In Proceedings of IEEE international symposium on field-programmable custom computing machines (FCCM).Google Scholar
  3. 3.
    SDSoC development environment. https://www.xilinx.com/products/design-tools/software-zone/sdsoc.html. Accessed: 2017-11-12.
  4. 4.
    SoCEDS getting started. http://www.alterawiki.com/wiki/SoCEDSGettingStarted. Accessed: 2017-11-12.
  5. 5.
    Liu, C., Ng, H. -C., So, H.K.-H. (2015). QuickDough: A rapid FPGA loop accelerator design framework using soft CGRA overlay. In Proceedings of international conference on field programmable technology (FPT).Google Scholar
  6. 6.
    Fowers, J., Liu, J., Stitt, G. (2014). A framework for dynamic parallelization of FPGA-accelerated applications. In Proceedings of international workshop on software and compilers for embedded systems (SCOPES).Google Scholar
  7. 7.
    Kalms, L., & Göhringer, D. (2017). Exploration of OpenCL for FPGAs using SDAccel and comparison to GPUs and multicore CPUs. In Proceedings of international conference on field programmable logic and applications (FPL).Google Scholar
  8. 8.
  9. 9.
    Ugurdag, H.F. (2013). Experiences on the road from EDA developer to designer to educator. In Proceedings of east-west design & test symposium (EWDTS).Google Scholar
  10. 10.
    Desmouliers, C., Oruklu, E., Aslan, S., Saniie, J., Vallina, F.M. (2012). Image and video processing platform for field programmable gate arrays using a high-level synthesis. IET Computers & Digital Techniques, 6(6), 414–425.CrossRefGoogle Scholar
  11. 11.
    Sahlbach, H., Thiele, D., Ernst, R. (2017). A system-level FPGA design methodology for video applications with weakly-programmable hardware components. Journal of Real-Time Image Processing, 13(2), 291–309.CrossRefGoogle Scholar
  12. 12.
    Philip, J.T., Samuvel, B., Pradeesh, K., Nimmi, N.K. (2014). Rimcom: Raster-order image compressor for embedded video applications. In Proceedings of international conference on emerging research areas: magnetics, machines and drives (AICERA/iCMMD).Google Scholar
  13. 13.
    Middlebury optical flowv benchmark database. http://vision.middlebury.edu/flow/eval/results/results-e1.php. Accessed: 2017-11-12.
  14. 14.
    Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H. (2009). Anisotropic Huber-L1 Optical Flow. In Proceedings of British machine vision conference (BMVC).Google Scholar
  15. 15.
    Büyükaydın, D., & Akgün, T. (2015). GPU implementation of an anisotropic Huber-L1 dense optical flow algorithm using OpenCL. In Proceedings of international conference on embedded computer systems: Architectures, modeling, and simulation (SAMOS).Google Scholar
  16. 16.
    Levent, V.E. (2015). FPGA based hardware platform for video processing, Master’s thesis, Yildiz Technical University. YOK Thesis No: 406560.Google Scholar
  17. 17.
    Hwang, C.-T., Hsu, Y.-C., Lin, Y.-L. (1991). Scheduling for functional pipelining and loop winding. In Proceedings of ACM/IEEE design automation conference (DAC), pp. 764–769.Google Scholar
  18. 18.
    Parhi, K.K. (1999). VLSI digital signal processing systems: Design and implementation. New York: Wiley.Google Scholar
  19. 19.
    Guzel, A.E., Levent, V., Tosun, M., Ozkan, M.A., Akgun, T., Erbas, C., Ugurdag, H.F. (2016). Using high-level synthesis for rapid design of video processing pipes. In Proceedings of East-West Design & Test Symposium (EWDTS).Google Scholar
  20. 20.
    Vivado design suite user guide: High level synthesis (ug902 v2014.3). http://www.xilinx.com/support/documentation/sw_manuals/xilinx2014_3/ug902-vivado-high-level-synthesis.pdf. Accessed: 2017-11-12.
  21. 21.
    Buyukmihci, M., Levent, V., Guzel, A., Ates, O., Tosun, M., Akgun, T., Erbas, C., Goren, S., Ugurdag, H. (2016). Output domain downscaler. In Proceedings of international symposium on computer and information sciences (ISCIS).Google Scholar
  22. 22.
    Jacobsen, M., Richmond, D., Hogains, N., Kastner, R. (2015). Riffa 2.1: A reusable integration framework for fpga accelerators. In ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 8, no. 4, article no. 22.Google Scholar
  23. 23.
    Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P. (2001). Color transfer between images. IEEE Computer Graphics and Applications, 21(5), 34–41.CrossRefGoogle Scholar
  24. 24.
    Toet, A. (2003). Natural colour mapping for multiband nightvision imagery. Information Fusion, 4(3), 155–166.CrossRefGoogle Scholar
  25. 25.
    Janik, I., Tang, Q., Khalid, M. (2015). An overview of altera sdk for opencl: A user perspective. In Proceedings of IEEE Canadian conference on electrical and computer engineering (CCECE), pp. 559–564.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vecdi Emre Levent
    • 1
  • Aydin E. Guzel
    • 1
  • Mustafa Tosun
    • 1
  • Mert Buyukmihci
    • 1
    • 2
  • Furkan Aydin
    • 1
  • Sezer Gören
    • 2
  • Cengiz Erbas
    • 3
  • Toygar Akgün
    • 3
  • H. Fatih Ugurdag
    • 1
    Email author
  1. 1.Ozyegin UniversityIstanbulTurkey
  2. 2.Yeditepe UniversityIstanbulTurkey
  3. 3.AselsanAnkaraTurkey

Personalised recommendations