Skip to main content
Log in

POWER-Area-Performance Characteristics of FPGA-based Sigma-Delta FIR Filters

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

While one-bit ΣΔ modulators are widely used in Analog to Digital conversion stages due to their inherent linearity and precision, it is less common for the entire digital processing path to operate in single bit mode at the oversampled rate of the conversion system. The conventional approach has been to decimate the signal bit stream after conversion and for the remaining processing to be performed in standard multi-bit binary at the Nyquist rate and with a resolution mandated by the dynamic range and noise. Using a Finite Impulse Response filter design as an example, we compare the area and performance of this conventional approach with the alternative single bit approach that operates directly on the ΣΔ data stream using ternary coefficients {−1, 0, +1} derived from the ΣΔ modulation of the target impulse response. Filters exhibiting approximately equivalent spectral performance in the two alternative approaches were developed using VHDL and simulated using some commercial FPGA types. In these experiments, the single-bit filters using ternary coefficients were found to dissipate less power compared to the conventional approach despite their need to operate at much higher clock rates. They also exhibit up to 40% higher performance and offer useful area savings at lower filter orders. At higher orders, the ΣΔ approach retains its power and performance advantages but exhibits slightly higher chip area. The simplicity and low power of the ΣΔ approach makes it applicable to mobile communication processing using low cost FPGA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Benvenuto, N., Franks, L. E., & Hill, F. S. (1985). Realization of finite impulse response filters using coefficients +1, 0, and −1. IEEE Transactions on Communications, COMM-33(10).

  2. Memon, T. D., Beckett, P., & Hussain, Z. M. Design and Implementation of Ternary FIR filter using Sigma Delta Modulation. In Proc. ISCCC’09, 9–11 October Singapore 2009 (pp. 169–173).

  3. Wong, P. W. (1992). Fully sigma-delta modulation encoded FIR filters. IEEE Transactions on Signal Processing, 40(6), 1605–1610.

    Article  Google Scholar 

  4. Wong, P. W., & Gray, R. M. (1990). FIR filters with sigma-delta modulation encoding. IEEE Transaction on Acoustics, Speech, and Signal Processing, 38, 979–990.

    Article  Google Scholar 

  5. Chen, C., & Wilson, A. N. (1998). Higher order sigma-delta modulation encoding for the design of multiplierless FIR filters. IEE Electronics Letters, 34(24), 2298–2300.

    Article  Google Scholar 

  6. Sadik, A. Z., Hussain, Z. M., & O’Shea, P. (2006). An adaptive algorithm for ternary filtering. IEE Electronics Letters, 42(7), 420–420.

    Article  Google Scholar 

  7. Thompson, A. C., O’Shea, P., Hussain, Z. M., & Steele, B. R. (2004). Efficient single-bit ternary digital filtering using sigma-delta modulator. IEEE Letters on Signal Processing, 11(2), 164–166.

    Article  Google Scholar 

  8. Memon, T. D., Beckett, P., & Sadik, A. Z. Performance-area tradeoffs in the design of short word length FIR filter. In Proc. ICMENS’09, December 28–30 2009 (pp. 67–71)

  9. Memon, T. D., Beckett, P., & Sadik, A. Z. Single-bit and Conventional FIR Filter Comparison in State-of-Art FPGA. In Proc. ICMENS’09, 28–30 December 2009 (pp. 72–76).

  10. Sadik, A. Z., Hussain, Z. M., & O’Shea, P. A single-bit digital DC-blocker using ternary filtering. In Proc. Tencon’05, 2005

  11. Grover, R. S., Shang, W., & Li, Q. (2002). A Faster Distributed Arithmetic Architecture for FPGAs. Paper presented at the FPGA’02, Monterey, California, USA, February 24–26,

  12. Yoo, H., & Anderson, D. V. Hardware-efficient distributed arithmetic architecture for high-order digital filters In IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), March 2005 (Vol. 5, pp. 125–128).

  13. Meher, P. K., Chandrasekaran, S., & Amira, A. (2008). FPGA realization of FIR filter by efficient and flexible systolization using distributed arithmetic. IEEE Transaction on Signal Processing, 56(7), 3009–3017.

    Article  MathSciNet  Google Scholar 

  14. Jang, Y., & Yang, S. (2002). Low-power CSD linear phase FIR filter structure using vertical common sub-expression. Electronic letters, 38(15), 777–779.

    Article  Google Scholar 

  15. Dempster, A. G., & Macleod, M. D. (1995). Use of minimum adder multiplier blocks in FIR digital filters. IEEE Transaction on cicuits Systems II, Analog Digital Signal Processing, 42(9), 569–577.

    Article  MATH  Google Scholar 

  16. Shanthala, S., & Kulkarni, S. Y. (2009). High speed and low power FPGA implementation of FIR filter for DSP applications. European Journal of Scientific Research, 31(No.1), 19–28.

    Google Scholar 

  17. Hawley, R. A., Wong, B. C., Lin, T.-J., Laskowski, J., & Samueli, H. (1996). Design techniques for silicon compiler implementations of high-speed FIR digital filters. IEEE Journal of Solid-State Cicuits, 31(5), 656–667.

    Article  Google Scholar 

  18. Memon, T. D., Beckett, P., & Hussain, Z. M. Analysis and design of ternary FIR filter using sigma delta modulation. In INMIC, 2009 (pp. 476–480).

  19. Macpherson, K. N., & Stewart, R. W. (2006). Area efficient FIR filters for high speed FPGA implementation. IEE Proceedings - Vission, Image, and Signal Processing, 153(6), 711–720.

    Article  Google Scholar 

  20. Li, Y., Peng, C., Yu, D., & Zhang, X. The Implementation methods of High Speed FIR Filter on FPGA. In Proc. ICSICT’08, 2008 (pp. 2216–2219)

  21. Wiatr, K., & Jamro, E. (2000)Constant coefficient multiplication in FPGA structures. In Proceedings of the 26th Euromicro Conference, 2000 (Vol. 1, pp. 252–259 vol.251)

  22. Schreier, R., Temes, G. C., Electrical, I. o., & Engineers, E. (2005). Understanding delta-sigma data converters. IEEE press New Jersey.

  23. Pervez, A. M., Sorensen, H. V., & Spiegel, J. V. D. (1996). An Overview of Sigma-Delta Converters. IEEE Signal Processing Magazine, 61–84.

  24. Thompson, A. C., Hussain, Z. M., & O’Shea, P. (2003). Performance of a new single-bit ternary filtering system. In Proc. ATNAC’03, 2003

  25. Ng, C.-W., Wong, N., & Ng, T.-S. (2007). Bit-stream adder and multiplier for tri-level sigma-delta modulators. IEEE Transaction on Circuits and Systems-II: Express Briefs, 54(12), 1082–1086.

    Article  Google Scholar 

  26. Johns, D. A., & Lewis, D. M. (1993). Design and analysis of delta-sigma based IIR filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(4), 233–240.

    Article  MATH  Google Scholar 

  27. Wong, P. W. (1992). Fully sigma-delta modulation encoded FIR filters. IEEE Transactions on Signal Processing, 40(6), 1605–1610.

    Article  Google Scholar 

  28. Thompson, A. C., Hussain, Z. M., & O’Shea, P. A correlative criterion for the stability of sigma-delta based IIR filter: Application to an FIR-like bit-stream filter. In 2nd WSEAS International Conference on Electronics, Control and Signal Processing, singapore, 2003: PORTAL

  29. Losada, R. A. (2008). Digital filters with MATLAB: Mathworks Inc.

  30. Mehboob, R., Khan, S. A., & Qamar, R. (2009). FIR filter design methodology for hardware optimized implementation. IEEE Transaction on Consumer Electronics, 55(3), 1669–1673.

    Article  Google Scholar 

  31. Asato, C., Ditzen, C., & Dholakia, S. (1990). A data-path multiplier with automatic insertion of pipeline stages. IEEE Journal of Solid-State Circuits, 25(2), 383–387.

    Article  Google Scholar 

  32. Altera Inc. (2009). Quartus-II Handbook Version 9.1 (Vol. volume-I: Design and Synthesis): Altera Corporation.

  33. Veendrick, H. J. M. (1984). Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits. IEEE Journal of Solid-State Circuits, 19, 468–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayab D. Memon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memon, T.D., Beckett, P. & Sadik, A.Z. POWER-Area-Performance Characteristics of FPGA-based Sigma-Delta FIR Filters. J Sign Process Syst 70, 275–288 (2013). https://doi.org/10.1007/s11265-012-0664-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-012-0664-8

Keywords

Navigation