Advertisement

The Theory and Practice of Coplanar Shadowgram Imaging for Acquiring Visual Hulls of Intricate Objects

Abstract

Acquiring 3D models of intricate objects (like tree branches, bicycles and insects) is a challenging task due to severe self-occlusions, repeated thin structures, and surface discontinuities. In theory, a shape-from-silhouettes (SFS) approach can overcome these difficulties and reconstruct visual hulls that are close to the actual shapes, regardless of the complexity of the object. In practice, however, SFS is highly sensitive to errors in silhouette contours and the calibration of the imaging system, and has therefore not been used for obtaining accurate shapes with a large number of views. In this work, we present a practical approach to SFS using a novel technique called coplanar shadowgram imaging that allows us to use dozens to even hundreds of views for visual hull reconstruction. A point light source is moved around an object and the shadows (silhouettes) cast onto a single background plane are imaged. We characterize this imaging system in terms of image projection, reconstruction ambiguity, epipolar geometry, and shape and source recovery. The coplanarity of the shadowgrams yields unique geometric properties that are not possible in traditional multi-view camera-based imaging systems. These properties allow us to derive a robust and automatic algorithm to recover the visual hull of an object and the 3D positions of the light source simultaneously, regardless of the complexity of the object. We demonstrate the acquisition of several intricate shapes with severe occlusions and thin structures, using 50 to 120 views.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. Åström, K., Cipolla, R., & Giblin, P. (1999). Generalised epipolar constraints. International Journal of Computer Vision, 33(1), 51–72.

  2. Balan, A., Sigal, L., Black, M., & Haussecker, H. (2007). Shining a light on human pose: On shadows, shading and the estimation of pose and shape. In Proc. international conference on computer vision ’07.

  3. Baumgart, B. G. (1974). Geometric modeling for computer vision. PhD thesis, Stanford University.

  4. Besant, W. H. (1890). Conic sections, treated geometrically. Cambridge: Deighton, Bell.

  5. Boykov, Y., & Funka-Lea, G. (2006). Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision, 70(2), 109–131.

  6. Campbell, N., Vogiatzis, G., Hernández, C., & Cipolla, R. (2007). Automatic 3d object segmentation in multiple views using volumetric graph-cuts. In Proc. the British machine vision conference ’07 (pp. 530–539).

  7. Chandraker, M. K., Kahl, F., & Kriegman, D. J. (2005). Reflections on the generalized bas-relief ambiguity. In Proc. computer vision and pattern recognition ’05 (Vol. 1, pp. 788–795).

  8. Cheung, K. M., Baker, S., & Kanade, T. (2005). Shape-from-silhouette across time, Part I: Theory and algorithms. International Journal of Computer Vision, 62(3), 221–247.

  9. Cipolla, R., Åström, K., & Giblin, P. (1995). Motion from the frontier of curved surfaces. In Proc. international conference on computer vision ’95 (pp. 269–275).

  10. Cross, G., Fitzgibbon, A. W., & Zisserman, A. (1999). Parallax geometry of smooth surfaces in multiple views. In Proc. international conference on computer vision ’99 (pp. 323–329).

  11. Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images. In Proc. SIGGRAPH ’96 (pp. 303–312).

  12. Drbohlav, O., & Chantler, M. (2005). Can two specular pixels calibrate photometric stereo? In Proc. international conference on computer vision ’05 (pp. 1850–1857).

  13. Drbohlav, O., & Sara, R. (2002). Specularities reduce ambiguity of uncalibrated photometric stereo. In Proc. the 7th European conference on computer vision (pp. 46–62).

  14. Fitzgibbon, A., Pilu, M., & Fisher, R. (1999). Direct least squares fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476–480.

  15. Franco, J.-S., & Boyer, E. (2003). Exact polyhedral visual hulls. In Proc. the 15th British machine vision conference (pp. 329–338).

  16. Furukawa, Y., Sethi, A., Ponce, J., & Kriegman, D. (2006). Robust structure and motion from outlines of smooth curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2), 302–315.

  17. Georghiades, A. S. (2003). Incorporating the torrance and sparrow model of reflectance in uncalibrated photometric stereo. In Proc. international conference on computer vision ’03 (Vol. 2, pp. 816–823).

  18. Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision, 2nd edn. Cambridge: Cambridge University Press.

  19. Hayakawa, H. (1994). Photometric stereo under a light-source with arbitrary motion. JOSA, 11(11), 3079–3089.

  20. Hernández, C., Schmitt, F., & Cipolla, R. (2007). Silhouette coherence for camera calibration under circular motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 343–349.

  21. Hooke, R. (1667). Micrographia. London, Chap. Observation LVIII.

  22. Kriegman, D. J., & Belhumeur, P. N. (2001). What shadows reveal about object structure. Journal of the Optical Society of America, 18(8), 1804–1813.

  23. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., & Fulk, D. (2000). The digital michelangelo project: 3D scanning of large statues. In Proc. SIGGRAPH’00 (pp. 131–144).

  24. Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., & McMillan, L. (2000). Image-based visual hulls. In Proc. SIGGRAPH ’00 (pp. 369–374).

  25. Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1988). Numerical recipes in C. Cambridge: Cambridge University Press.

  26. Savarese, S., Andreetto, M., Rushmeier, H., Bernardini, F., & Perona, P. (2005). 3D reconstruction by shadow carving: Theory and practical evaluation. International Journal of Computer Vision, 71(3), 305–336.

  27. Sawhney, H. S. (1994). Simplifying motion and structure analysis using planar parallax and image warping. In Proc. international conference of pattern recognition (pp. 403–408).

  28. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., & Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In Proc. computer vision and pattern recognition ’06 (Vol. 1, pp. 519–526).

  29. Settles, G. S. (2001). Schlieren & shadowgraph techniques. Berlin: Springer.

  30. Sinha, S. N., Pollefeys, M., & McMillan, L. (2004). Camera network calibration from dynamic silhouettes. In Proc. computer vision and pattern recognition ’04 (Vol. 1, pp. 195–202).

  31. Smith, A. R., & Blinn, J. F. (1996). Blue screen matting. In Proc. SIGGRAPH ’96 (pp. 259–268).

  32. Tan, P., Mallick, S., Kriegman, D., Quan, L., & Zickler, T. (2007). Isotropy, reciprocity and the gbr ambiguity. In Proc. computer vision and pattern recognition ’07 (pp. 1–8).

  33. Wong, K.-Y. K., & Cipolla, R. (2004). Reconstruction of sculpture from its profiles with unknown camera positions. IEEE Transactions on Image Processing, 13(3), 381–389.

  34. Yamazaki, S., Narasimhan, S., Baker, S., & Kanade, T. (2007). Coplanar shadowgrams for acquiring visual hulls of intricate objects. In Proc. international conference on computer vision ’07, October 2007.

  35. Yezzi, A. J., & Soatto, S. (2003). Stereoscopic segmentation. International Jornal of Computer Vision, 1(53), 31–43.

Download references

Author information

Correspondence to Shuntaro Yamazaki.

Additional information

This is an extension and consolidation of our previous work on coplanar shadowgram imaging system (Yamazaki et al. 2007) presented at IEEE International Conference on Computer Vision 2007.

Electronic Supplementary Material

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

VideoObject

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamazaki, S., Narasimhan, S.G., Baker, S. et al. The Theory and Practice of Coplanar Shadowgram Imaging for Acquiring Visual Hulls of Intricate Objects. Int J Comput Vis 81, 259–280 (2009) doi:10.1007/s11263-008-0170-4

Download citation

Keywords

  • Multi-view geometry
  • Shape reconstruction
  • Shape from silhouette
  • Imaging system
  • Calibration
  • Intricate shape
  • Shadowgram
  • Coplanar shadowgram