Advertisement

Virus Genes

pp 1–14 | Cite as

Full-length genome analysis of the first human G8P[14] rotavirus strain from Morocco suggests evidence of zoonotic transmission

  • Sanaâ Alaoui AmineEmail author
  • Marouane Melloul
  • Moulay Abdelaziz El Alaoui
  • Nadia Touil
  • Elmostafa El Fahime
Original Paper
  • 38 Downloads

Abstract

An unusual group A rotavirus (RVA) strain MAR/ma31/2011/G8P[14] was detected for the first time in Morocco in a stool sample from hospitalized child aged 18 months suffering from acute gastroenteritis and fever in 2011. Complete genome sequencing of the ma31 strain was done using the capillary sequencing technology. The analysis revealed the G8-P[14]-I2-R2-C2-M2-A11-N2-T6-E2-H3 constellation and the backbone genes: I2-R2-C2-M2-A11-N2-T6-E2-H3 are commonly found in RVA strains from artiodactyls such as cattle. The constellation was shared with another Italian zoonotic G8P[14] strains (BA01 and BA02), two Hungarian human strains (182-02 and BP1062) and a sheep RVA strain OVR762. Phylogenetic analysis of each genome segment of ma31 revealed a mixed gene configuration originated from animals and human. Comparison of the antigenic regions of VP7 and VP4 amino acid sequences between ma31 strain and selected animal and human strains bearing G8 and or P[14], showed a high level of conservation, while many substitutions was observed in comparison with RotaTeq™ and Rotarix™ vaccine strains. In contrast, alignment analysis of the four antigenic sites of VP6 revealed a high degree of conservation. These findings reveal a typical zoonotic origin of the strain and confirm a high potential for RVA zoonotic transmission between bovine and humans, allowing the generation of novel rotavirus genotypes.

Keywords

Group A rotavirus G8P[14] genotype Reassortment Phylogenetic analysis Morocco 

Notes

Acknowledgements

This study was supported by the National Center for Scientific and Technical Research (CNRST) and the Military Health Service. There was no involvement of the funding sources in carrying out this work from its conception to the data analysis, article writing and its submission for publication.

Author contributions

NT and EE conceived and designed the study. SA and MM carried out the experiments. SA, MM and ME performed the data analysis. SA wrote the draft. NT, EE, MM and ME reviewed the manuscript. All the authors read the final version of the manuscript and approved it for publication.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval for this study was obtained from the Biomedical Research Ethics Committee of the Faculty of Medicine and Pharmacy of Rabat, Mohamed V University, Morocco following the guidelines set by the Declaration of Helsinki.

Supplementary material

11262_2019_1677_MOESM1_ESM.doc (124 kb)
Supplementary material 1 (DOC 123 kb)
11262_2019_1677_MOESM2_ESM.doc (131 kb)
Supplementary material 2 (DOC 131 kb)

References

  1. 1.
    Estes MK, Greenberg HB (2013) Rotaviruses. In: Knipe PMHDM, Cohen JI, Griffin DE, Lamb RA, Martin MA, Racaniello VR, Roizman B (eds) Fields Virology. Williams and Wilkins, Philadelphia, pp 1347–1401Google Scholar
  2. 2.
    Martella V, Banyai K, Matthijnssens J, Buonavoglia C, Ciarlet M (2010) Zoonotic aspects of rotaviruses. Vet Microbiol 140(3–4):246–255CrossRefGoogle Scholar
  3. 3.
    Parashar UD, Gibson CJ, Bresee JS, Glass RI (2006) Rotavirus and severe childhood diarrhea. Emerg Infect Dis 12(2):304–306CrossRefGoogle Scholar
  4. 4.
    Tate JE, Burton AH, Boschi-Pinto C, Parashar UD (2016) Global, regional, and nationa estimates of rotavirus mortality in children < 5 years of age, 2000–2013. Clin Infect Dis 1(62):S96–S105CrossRefGoogle Scholar
  5. 5.
    Estes MK, Kapikian AZ (2006) Rotaviruses. In: Knipe D, Griffin D, Lamb R, Martin M, Roizman B, Straus S (eds) Fields Virology. Wolters Kluwer Health; Lippincott Williams and Wilkins, Philadelphia, pp 1917–1974Google Scholar
  6. 6.
    Iturriza-Gomara M, Dallman T, Banyai K, Bottiger B, Buesa J, Diedrich S, Fiore L, Johansen K, Koopmans M, Korsun N, Koukou D, Kroneman A, Laszlo B, Lappalainen M, Maunula L, Marques AM, Matthijnssens J, Midgley S, Mladenova Z, Nawaz S, Poljsak-Prijatelj M, Pothier P, Ruggeri FM, Sanchez-Fauquier A, Steyer A, Sidaraviciute-Ivaskeviciene I, Syriopoulou V, Tran AN, Usonis V, Van Ranst M, Rougemont A, Gray J (2011) Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network. Epidemiol Infect 139(6):895–909CrossRefGoogle Scholar
  7. 7.
    Matthijnssens J, Ciarlet M, McDonald SM, Attoui H, Banyai K, Brister JR, Buesa J, Esona MD, Estes MK, Gentsch JR, Iturriza-Gomara M, Johne R, Kirkwood CD, Martella V, Mertens PP, Nakagomi O, Parreno V, Rahman M, Ruggeri FM, Saif LJ, Santos N, Steyer A, Taniguchi K, Patton JT, Desselberger U, Van Ranst M (2011) Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch Virol 156(8):1397–1413CrossRefGoogle Scholar
  8. 8.
    Rojas Miguel A, Gonçalves Jorge Luiz S, Dias Helver G, Manchego A, Santos N (2017) Identification of two novel rotavirus A genotypes, G35 and P[50], from Peruvian alpaca faeces. Infect Genet Evol 55:71–74CrossRefGoogle Scholar
  9. 9.
    Degiuseppe JI, Beltramino JC, Millan A, Stupka JA, Parra GI (2013) Complete genome analyses of G4P[6] rotavirus detected in Argentinean children with diarrhoea provides evidence of interspecies transmission from swine. Clin Microbiol Infect.  https://doi.org/10.1111/1469-0691.12216 Google Scholar
  10. 10.
    Banyai K, Gentsch JR, Griffin DD, Holmes JL, Glass RI, Szucs G (2003) Genetic variability among serotype G6 human rotaviruses: identification of a novel lineage isolated in Hungary. J Med Virol 71(1):124–134CrossRefGoogle Scholar
  11. 11.
    Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald SM, Palombo EA, Iturriza- Gomara M, Maes P, Patton JT, Rahman M, Van Ranst M (2008) Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82(7):3204–3219CrossRefGoogle Scholar
  12. 12.
    Doro R, Farkas SL, Martella V, Banyai K (2015) Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 13(11):1337–1350CrossRefGoogle Scholar
  13. 13.
    Medici MC, Tummolo F, Bonica MB, Heylen E, Zeller M, Calderaro A, Matthijnssens J (2015) Genetic diversity in three bovine-like human G8P[14] and G10P[14] rotaviruses suggests independent interspecies transmission events. J Gen Virol 96(Pt 5):1161–1168Google Scholar
  14. 14.
    Page N, Esona M, Seheri M, Nyangao J, Bos P, Mwenda J, Steele D (2010) Characterization of genotype G8 strains from Malawi, Kenya, and South Africa. J Med Virol 82(12):2073–2081CrossRefGoogle Scholar
  15. 15.
    Armah GE, Steele AD, Esona MD, Akran VA, Nimzing L, Pennap G (2010) Diversity of rotavirus strains circulating in west Africa from 1996 to 2000. J Infect Dis 1(202):653571Google Scholar
  16. 16.
    Todd S, Page NA, Duncan Steele A, Peenze I, Cunliffe NA (2010) Rotavirus strain types circulating in Africa: review of studies published during 1997-2006. J Infect Dis 1(202):653555Google Scholar
  17. 17.
    Dennis FE, Fujii Y, Haga K, Damanka S, Lartey B, Agbemabiese CA, Ohta N, Armah GE, Katayama K (2014) Identification of novel Ghanaian G8P[6] human-bovine reassortant rotavirus strain by next generation sequencing. PLoS ONE 9(6):e100699CrossRefGoogle Scholar
  18. 18.
    Ghosh S, Gatheru Z, Nyangao J, Adachi N, Urushibara N, Kobayashi N (2011) Full genomic analysis of a G8P[1] rotavirus strain isolated from an asymptomatic infant in Kenya provides evidence for an artiodactyl-to-human interspecies transmission event. J Med Virol 83(2):367–376CrossRefGoogle Scholar
  19. 19.
    Nakagomi T, Doan YH, Dove W, Ngwira B, Iturriza-Gomara M, Nakagomi O, Cunliffe NA (2013) G8 rotaviruses with conserved genotype constellations detected in Malawi over 10 years (1997-2007) display frequent gene reassortment among strains co-circulating in humans. J Gen Virol 94(Pt 6):1273–1295CrossRefGoogle Scholar
  20. 20.
    Gautam R, Mijatovic-Rustempasic S, Roy S, Esona MD, Lopez B, Mencos Y, Rey-Benito G, Bowen MD (2015) Full genomic characterization and phylogenetic analysis of a zoonotic human G8P[14] rotavirus strain detected in a sample from Guatemala. Infect Genet Evol 33:206–211CrossRefGoogle Scholar
  21. 21.
    Ianiro G, Delogu R, Bonomo P, Castiglia P, Ruggeri FM, Fiore L (2014) Molecular characterization of human G8P[4] rotavirus strains in Italy: proposal of a more complete subclassification of the G8 genotype in three major lineages. Infect Genet Evol 21:129–133CrossRefGoogle Scholar
  22. 22.
    Doblali T, Touil N, Kaplon J, Ambert-Balay K, Agdar A, El hamzaoui S, Pothier P (2015) Clinical and molecular descriptions of rotavirus in Morocco 2 years after Rotarix® introduction. In 6th European Rotavirus Biology Meeting (ERBM), Dijon, France, 17–20 MayGoogle Scholar
  23. 23.
    Iturriza-Gomara M, Kang G, Gray J (2004) Rotavirus genotyping: keeping up with an evolving population of human rotaviruses. J Clin Virol 31(4):259–265CrossRefGoogle Scholar
  24. 24.
    Simmonds MK, Armah G, Asmah R, Banerjee I, Damanka S, Esona M, Gentsch JR, Gray JJ, Kirkwood C, Page N, Iturriza-Gomara M (2008) New oligonucleotide primers for P-typing of rotavirus strains: strategies for typing previously untypeable strains. J Clin Virol 42(4):368–373CrossRefGoogle Scholar
  25. 25.
    Maes P, Matthijnssens J, Rahman M, Van Ranst M (2009) RotaC: a web-based tool for the complete genome classification of group A rotaviruses. BMC Microbiol 9(238):1471–2180Google Scholar
  26. 26.
    Ennima I, Sebbar G, Harif B, Amzazi S, Loutfi C, Touil N (2016) Isolation and identification of group A rotaviruses among neonatal diarrheic calves Morocco. BMC Res Notes 9(1):261CrossRefGoogle Scholar
  27. 27.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739CrossRefGoogle Scholar
  28. 28.
    Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  29. 29.
    Jere KC, Mlera L, Page NA, van Dijk AA, O’Neill HG (2011) Whole genome analysis of multiple rotavirus strains from a single stool specimen using sequence-independent amplification and 454(R) pyrosequencing reveals evidence of intergenotype genome segment recombination. Infect Genet Evol 11(8):2072–2082CrossRefGoogle Scholar
  30. 30.
    Holmes JL, Kirkwood CD, Gerna G, Clemens JD, Rao MR, Naficy AB, Abu-Elyazeed R, Savarino SJ, Glass RI, Gentsch JR (1999) Characterization of unusual G8 rotavirus strains isolated from Egyptian children. Arch Virol 144(7):1381–1396CrossRefGoogle Scholar
  31. 31.
    Benhafid M, Elomari N, Azzouzi Idrissi M, Rguig A, Gentsch JR, Parashar U, Elaouad R (2015) Effect of monovalent rotavirus vaccine on rotavirus disease burden and circulating rotavirus strains among children in Morocco. J Med Virol 87(6):944–953CrossRefGoogle Scholar
  32. 32.
    Benhafid M, Rguig A, Trivedi T, Elqazoui M, Teleb N, Mouane N, Filali-Maltouf A, Parashar U, Patel M, Elaouad R (2012) Monitoring of rotavirus vaccination in Morocco: establishing the baseline burden of rotavirus disease. Vaccine 30:6515–6520CrossRefGoogle Scholar
  33. 33.
    Gerna G, Steele AD, Hoshino Y, Sereno M, Garcia D, Sarasini A, Flores J (1994) A comparison of the VP7 gene sequences of human and bovine rotaviruses. J Gen Virol 75(Pt 7):1781–1784CrossRefGoogle Scholar
  34. 34.
    Mijatovic-Rustempasic S, Roy S, Sturgeon M, Rungsrisuriyachai K, Reisdorf E, Cortese MM, Bowen MD (2015) Full-genome sequence of the first G8P[14] rotavirus strain detected in the United States. Genome Announc 3(3):00677-15CrossRefGoogle Scholar
  35. 35.
    Matthijnssens J, Van Ranst M (2012) Genotype constellation and evolution of group A rotaviruses infecting humans. Curr Opin Virol 2(4):426–433CrossRefGoogle Scholar
  36. 36.
    Matthijnssens J, Potgieter CA, Ciarlet M, Parreno V, Martella V, Banyai K, Garaicoechea L, Palombo EA, Novo L, Zeller M, Arista S, Gerna G, Rahman M, Van Ranst M (2009) Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla? J Virol 83(7):2917–2929CrossRefGoogle Scholar
  37. 37.
    Hu L, Crawford SE, Czako R, Cortes-Penfield NW, Smith DF, Le Pendu J, Estes MK, Prasad BV (2012) Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485(7397):256–259CrossRefGoogle Scholar
  38. 38.
    Liu Y, Huang P, Tan M, Biesiada J, Meller J, Castello AA, Jiang B, Jiang X (2012) Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens. J Virol 86(18):9899–9910CrossRefGoogle Scholar
  39. 39.
    Fukai K, Sakai T, Hirose M, Itou T (1999) Prevalence of calf diarrhea caused by bovine group: a rotavirus carrying G serotype 8 specificity. Vet Microbiol 66:301–311CrossRefGoogle Scholar
  40. 40.
    Fodha I, Boumaiza A, Chouikha A, Dewar J, Armah G, Geyer A, Trabelsi A, Steele AD (2005) Detection of group A rotavirus strains circulating in calves in Tunisia. J Vet Med 52:49–50CrossRefGoogle Scholar
  41. 41.
    Matthijnssens J, Rahman M, Yang X, Delbeke T, Arijs I, Kabue JP, Muyembe JT, Van Ranst M (2006) G8 rotavirus strains isolated in the democratic Republic of Congo belong to the DS-1- like genogroup. J Clin Microbiol 44(5):1801–1809CrossRefGoogle Scholar
  42. 42.
    Esona M, Steele D, Kerin T, Armah G, Peenze I, Geyer A, Page N, Nyangao J, Akran Agbaya V, Trabelsi A, Tsion B, Aminu M, Sebunya T, Dewar J, Glass R, Gentsch J (2010) Determination of the G and P types of previously nontypeable rotavirus strains from the African rotavirus network, 1996–2004: identification of unusual G types. J Infect Dis 202:S49–S54CrossRefGoogle Scholar
  43. 43.
    Benmessaoud R, Jroundi I, Mouane N, Moraleda C, Tligui H, Seffar M, Alvarez- Martínez MJ, Pons MJ, Chaacho S, Hayes EB, Vila J, Alonso PL, Bassat Q, Ruiz J (2015) Aetiology, epidemiology and clinical characteristics of acute moderate-to-severe diarrhoea in children under 5 years of age hospitalized in a referral paediatric hospital in Rabat, Morocco. J Med Microbiol 64(1):84–92CrossRefGoogle Scholar
  44. 44.
    Patel M, Steele D, Gentsch J, Wecker J, Glass R, Parashar U (2011) Real-world impact of rotavirus vaccination. Pediatr Infect Dis J 30(1 Suppl):S1–S5CrossRefGoogle Scholar
  45. 45.
    Heylen E, Zeller M, Ciarlet M, Lawrence J, Steele D, Van Ranst M, Matthijnssens J (2015) Comparative analysis of pentavalent rotavirus vaccine strains and G8 rotaviruses identified during vaccine trial in Africa. Sci Rep 5:14658CrossRefGoogle Scholar
  46. 46.
    Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21(5):885–897CrossRefGoogle Scholar
  47. 47.
    Buragohain M, Cherian SS, Prabhakar G, Chitambar SD (2008) VP6 capsid protein of chicken rotavirus strain CH2: sequence, phylogeny and in silico antigenic analyses. Virus Res 137(2):173–178CrossRefGoogle Scholar
  48. 48.
    Desselberger U, Huppertz HI (2011) Immune responses to rotavirus infection and vaccination and associated correlates of protection. J Infect Dis 203(2):188–195CrossRefGoogle Scholar
  49. 49.
    Franco MA, Angel J, Greenberg HB (2006) Immunity and correlates of protection for rotavirus vaccines. Vaccine 24(15):2718–2731CrossRefGoogle Scholar
  50. 50.
    Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM (2015) Unexpected spreading of G12P[8] rotavirus strains among young children in a small area of central Italy. J Med Virol 87(8):1292–1302CrossRefGoogle Scholar
  51. 51.
    Kirkwood CD (2010) Genetic and antigenic diversity of human rotaviruses: potential impact on vaccination programs. J Infect Dis 202:S43–S48CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sanaâ Alaoui Amine
    • 1
    • 2
    Email author
  • Marouane Melloul
    • 3
  • Moulay Abdelaziz El Alaoui
    • 2
    • 4
  • Nadia Touil
    • 1
    • 5
  • Elmostafa El Fahime
    • 1
    • 2
  1. 1.Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and PharmacyUniversity Mohammed V in RabatRabatMorocco
  2. 2.Molecular Biology and Functional Genomics Platform, National Center for Scientific and Technical Research, CNRSTRabatMorocco
  3. 3.Laboratory of Physiology, Genetics and Ethnopharmacology, Faculty of Sciences of OujdaUniversity Mohammed PremierOujdaMorocco
  4. 4.Virology Laboratory, Research Team in Molecular Virology and Onco Biology (ERVMOB), Faculty of Medicine and PharmacyUniversity Mohammed V in RabatRabatMorocco
  5. 5.Research and Biosafety LaboratoryMed V Military Teaching HospitalRabatMorocco

Personalised recommendations