Advertisement

Virus Genes

, Volume 54, Issue 6, pp 840–845 | Cite as

Identification of a new turncurtovirus in the leafhopper Circulifer haematoceps and the host plant species Sesamum indicum

  • Vahid Hasanvand
  • Mehdi Kamali
  • Jahangir Heydarnejad
  • Hossain Massumi
  • Anders Kvarnheden
  • Arvind Varsani
Article

Abstract

Turncurtoviruses (family: Geminiviridae; genus: Turncurtovirus) appear to have a high degree of genetic variation in Iran. Leafhoppers of the species Circulifer haematoceps (Mulsant and Rey, 1855) (family: Cicadellidae) were collected in 2014 from three geographical regions in south-eastern Iran (Orzoeyeh, Jiroft and Sirjan; Kerman province) and screened for the presence of turncurtoviruses using a combination of PCR and rolling circle amplification (RCA) methods. Eleven genomes of turncurtovirus were recovered and sequenced. Leafhoppers were sampled off sesame (S. indicum L.) and turnip (Brassica rapa sub sp. rapa). Thus, we identified three symptomatic sesame plants (yellowing, boat-shaped leaf curling, vein swelling on the lower leaf surfaces) from sesame farms in Jiroft. In these samples, we identified the same turncurtovirus as in the leafhoppers and have named it sesame curly top virus (SeCTV). Collectively, these SeCTV share > 98% genome-wide pairwise identity and ~ 87.3% to a recently identified turncurtovirus (sesame yellow mosaic virus; SeYMV) from sesame in Pakistan (GenBank accession MF344550). The SeCTV and SeYMV sequences share < 70% genome-wide pairwise identity with isolates of Turnip curly top virus and Turnip leaf roll virus, the two species in the genus Turncurtovirus. Based on the pairwise identities and phylogenetic analysis, SeCTV (n = 12) and SeYMV (n = 1) represent two strains of a new species in the genus Turncurtovirus.

Keywords

Circulifer haematoceps Sesamum indicum Turncurtovirus Sesame curly top virus Iran 

Notes

Acknowledgements

This research work was supported by Research and Technology Institute of Plant Production (RTIPP), Shahid Bahonar University of Kerman, Iran.

Author contributions

VH, MK and JH designed the study; AK, JH and HM prepared and provided laboratory support; MK and VH amplified and sequenced virus genomes; AV analysed the sequence data; JH and AV drafted the manuscript, and all authors read and approved the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11262_2018_1604_MOESM1_ESM.pdf (739 kb)
Supplementary material 1—Neighbour-joining phylogenetic tree of the genome sequences of turncurtoviruses and the genome-wide pairwise identities of the 12 turncurtovirus isolates from this study, SeYMV, TCTV and TLRV. The sequences were aligned using MUSCLE [30] and the resulting alignment was used to infer a Neighbour-joining phylogenetic tree with Jukes-Cantor nucleotide substitution matrix. Branches with bootstrap support of <60% were collapsed using TreeGraph 2 [33] (PDF 740 KB)
11262_2018_1604_MOESM2_ESM.xlsx (48 kb)
Supplementary material 2—Percentage pairwise identities of the genomes as well as CP and Rep amino acid sequences of the 61 turncurtoviruses (XLSX 47 KB)

References

  1. 1.
    Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Roumagnac P, Varsani A, ICTV Report C (2017) ICTV virus taxonomy profile: Geminiviridae. J Gen Virol 98(2):131–133.  https://doi.org/10.1099/jgv.0.000738 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142(2):145–164.  https://doi.org/10.1111/j.1744-7348.2003.tb00240.x CrossRefGoogle Scholar
  3. 3.
    Hesketh EL, Saunders K, Fisher C, Potze J, Stanley J, Lomonossoff GP, Ranson NA (2018) The 3.3 Å structure of a plant geminivirus using cryo-EM. Nat Commun 9(1):2369.  https://doi.org/10.1038/s41467-018-04793-6 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang W, Olson NH, Baker TS, Faulkner L, Agbandje-McKenna M, Boulton MI, Davies JW, McKenna R (2001) Structure of the Maize streak virus geminate particle. Virology 279(2):471–477.  https://doi.org/10.1006/viro.2000.0739 CrossRefPubMedGoogle Scholar
  5. 5.
    Ng TF, Duffy S, Polston JE, Bixby E, Vallad GE, Breitbart M (2011) Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS ONE 6(4):e19050.  https://doi.org/10.1371/journal.pone.0019050 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rosario K, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Breitbart M (2016) Begomovirus-associated satellite DNA diversity captured through vector-enabled metagenomic (VEM) surveys using whiteflies (Aleyrodidae). Viruses 8(2):36.  https://doi.org/10.3390/v8020036 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Rosario K, Seah YM, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Duffy S, Breitbart M (2015) Vector-enabled metagenomic (VEM) surveys using whiteflies (Aleyrodidae) reveal novel begomovirus species in the new and old worlds. Viruses 7(10):5553–5570.  https://doi.org/10.3390/v7102895 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Shepherd DN, Martin DP, Lefeuvre P, Monjane AL, Owor BE, Rybicki EP, Varsani A (2008) A protocol for the rapid isolation of full geminivirus genomes from dried plant tissue. J Virol Methods 149(1):97–102.  https://doi.org/10.1016/j.jviromet.2007.12.014 CrossRefPubMedGoogle Scholar
  9. 9.
    Guo J, Lai XP, Li JX, Yue JQ, Zhang SY, Li YY, Gao JY, Wang ZR, Duan HF, Yang JD (2015) First report on citrus chlorotic dwarf associated virus on lemon in Dehong Prefecture, Yunnan, China. Plant Dis 99(9):1287–1287.  https://doi.org/10.1094/Pdis-01-15-0011-Pdn CrossRefGoogle Scholar
  10. 10.
    Liang PB, Navarro B, Zhang ZX, Wang HQ, Lu MG, Xiao H, Wu QF, Zhou XP, Di Serio F, Li SF (2015) Identification and characterization of a novel geminivirus with a monopartite genome infecting apple trees. J Gen Virol 96:2411–2420.  https://doi.org/10.1099/vir.0.000173 CrossRefPubMedGoogle Scholar
  11. 11.
    Loconsole G, Saldarelli P, Doddapaneni H, Savino V, Martelli GP, Saponari M (2012) Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member in the family Geminiviridae. Virology 432(1):162–172.  https://doi.org/10.1016/j.virol.2012.06.005 CrossRefPubMedGoogle Scholar
  12. 12.
    Lu QY, Wu ZJ, Xia ZS, Xie LH (2015) Complete genome sequence of a novel monopartite geminivirus identified in mulberry (Morus alba L.). Arch Virol 160(8):2135–2138.  https://doi.org/10.1007/s00705-015-2471-6 CrossRefPubMedGoogle Scholar
  13. 13.
    Ma YX, Navarro B, Zhang ZX, Lu MG, Zhou XP, Chi SQ, Di Serio F, Li SF (2015) Identification and molecular characterization of a novel monopartite geminivirus associated with mulberry mosaic dwarf disease. J Gen Virol 96:2421–2434.  https://doi.org/10.1099/vir.0.000175 CrossRefPubMedGoogle Scholar
  14. 14.
    Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E, Idris A, Briddon RW, Rivera-Bustamante R, Murilo Zerbini F, Martin DP (2017) Capulavirus and Grablovirus: two new genera in the family Geminiviridae. Arch Virol 162(6):1819–1831.  https://doi.org/10.1007/s00705-017-3268-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Claverie S, Bernardo P, Kraberger S, Hartnady P, Lefeuvre P, Lett JM, Galzi S, Filloux D, Harkins GW, Varsani A, Martin DP, Roumagnac P (2018) From spatial metagenomics to molecular characterization of plant viruses: a geminivirus case study. Adv Virus Res 101:55–83.  https://doi.org/10.1016/bs.aivir.2018.02.003 CrossRefPubMedGoogle Scholar
  16. 16.
    Fontenele RS, Abreu RA, Lamas NS, Alves-Freitas DMT, Vidal AH, Poppiel RR, Melo FL, Lacorte C, Martin DP, Campos MA, Varsani A, Ribeiro SG (2018) Passion fruit chlorotic mottle virus: molecular characterization of a new divergent geminivirus in Brazil. Viruses.  https://doi.org/10.3390/v10040169 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fontenele RS, Lamas NS, Lacorte C, Lacerda ALM, Varsani A, Ribeiro SG (2017) A novel geminivirus identified in tomato and cleome plants sampled in Brazil. Virus Res 240:175–179.  https://doi.org/10.1016/j.virusres.2017.08.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Vaghi Medina CG, Teppa E, Bornancini VA, Flores CR, Marino-Buslje C, Lopez Lambertini PM (2017) Tomato apical leaf curl virus: a novel, monopartite geminivirus detected in tomatoes in Argentina. Front Microbiol 8:2665.  https://doi.org/10.3389/fmicb.2017.02665 CrossRefPubMedGoogle Scholar
  19. 19.
    Briddon RW, Heydarnejad J, Khosrowfar F, Massumi H, Martin DP, Varsani A (2010) Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran. Virus Res 152(1–2):169–175.  https://doi.org/10.1016/j.virusres.2010.05.016 CrossRefPubMedGoogle Scholar
  20. 20.
    Kamali M, Heydarnejad J, Massumi H, Kvarnheden A, Kraberger S, Varsani A (2016) Molecular diversity of turncurtoviruses in Iran. Arch Virol 161(3):551–561.  https://doi.org/10.1007/s00705-015-2686-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Varsani A, Navas-Castillo J, Moriones E, Hernandez-Zepeda C, Idris A, Brown JK, Murilo Zerbini F, Martin DP (2014) Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch Virol 159(8):2193–2203.  https://doi.org/10.1007/s00705-014-2050-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Kamali M, Heydarnejad J, Pouramini N, Masumi H, Farkas K, Kraberger S, Varsani A (2017) Genome sequences of beet curly top Iran virus, Oat dwarf virus, Turnip curly top virus, and Wheat dwarf virus identified in Leafhoppers. Genome Announc.  https://doi.org/10.1128/genomeA.01674-16 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Razavinejad S, Heydarnejad J (2013) Transmission and natural hosts of turnip curly top virus. Iran J Plant Pathol 49:27–28Google Scholar
  24. 24.
    Razavinejad S, Heydarnejad J, Kamali M, Massumi H, Kraberger S, Varsani A (2013) Genetic diversity and host range studies of turnip curly top virus. Virus Genes 46(2):345–353.  https://doi.org/10.1007/s11262-012-0858-y CrossRefPubMedGoogle Scholar
  25. 25.
    Rosario K, Padilla-Rodriguez M, Kraberger S, Stainton D, Martin DP, Breitbart M, Varsani A (2013) Discovery of a novel mastrevirus and alphasatellite-like circular DNA in dragonflies (Epiprocta) from Puerto Rico. Virus Res 171(1):231–237.  https://doi.org/10.1016/j.virusres.2012.10.017 CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang YP, Uyemoto JK, Kirkpatrick BC (1998) A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. J Virol Methods 71(1):45–50CrossRefGoogle Scholar
  27. 27.
    Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42(6):819–832CrossRefGoogle Scholar
  28. 28.
    Martin DP, Biagini P, Lefeuvre P, Golden M, Roumagnac P, Varsani A (2011) Recombination in eukaryotic single stranded DNA viruses. Viruses 3(9):1699–1738.  https://doi.org/10.3390/v3091699 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vev003.  https://doi.org/10.1093/ve/vev003 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113.  https://doi.org/10.1186/1471-2105-5-113 CrossRefGoogle Scholar
  31. 31.
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321.  https://doi.org/10.1093/sysbio/syq010 CrossRefPubMedGoogle Scholar
  32. 32.
    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772.  https://doi.org/10.1038/nmeth.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stover BC, Muller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform 11:7.  https://doi.org/10.1186/1471-2105-11-7 CrossRefGoogle Scholar
  34. 34.
    Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE 9(9):e108277.  https://doi.org/10.1371/journal.pone.0108277 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Health EPoP (2015) Scientific opinion on the pest categorisation of Circulifer haematoceps and C. tenellus. EFSA J 13 (1):3988.  https://doi.org/10.2903/j.efsa.2015.3988 CrossRefGoogle Scholar
  36. 36.
    Kheyri M, Alimoradi I (1969) The leafhoppers of sugarbeet in Iran and their role in curly-top virus disease. Sugarbeet Seed Institute Karaj. Entomological Research Division, TehranGoogle Scholar
  37. 37.
    Heydarnejad J, Keyvani N, Razavinejad S, Massumi H, Varsani A (2013) Fulfilling Koch’s postulates for beet curly top Iran virus and proposal for consideration of new genus in the family Geminiviridae. Arch Virol 158(2):435–443.  https://doi.org/10.1007/s00705-012-1485-6 CrossRefPubMedGoogle Scholar
  38. 38.
    Omidi M, Hosseini-Pour A, Rahimian H, Massumi H, Saillard C (2011) Identification of Circulifer haematoceps (Hemiptera:Cicadellidae) as Vector of Spiroplasma citri in the Kerman Province of Iran. J Plant Pathol 93(1):167–172Google Scholar
  39. 39.
    Salehi M, Esmailzadeh Hosseini SA, Salehi E, Bertaccini A (2017) Genetic diversity and vector transmission of phytoplasmas associated with sesame phyllody in Iran. Folia Microbiol (Praha) 62(2):99–109.  https://doi.org/10.1007/s12223-016-0476-5 CrossRefGoogle Scholar
  40. 40.
    Kersting U, Sengonca C, Cinar A (1992) Detection of Spiroplasma citri in non-citrus host plants and their associated leafhopper vectors in southern Turkey. FAO Plant Prot Bull 40:89–94Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Protection, College of AgricultureShahid Bahonar University of KermanKermanIran
  2. 2.Research and Technology Institute of Plant Production (RTIPP)Shahid Bahonar University of KermanKermanIran
  3. 3.Department of Plant Biology, Uppsala BioCenterSwedish University of Agricultural Sciences and Linnean Center of Plant Biology in UppsalaUppsalaSweden
  4. 4.The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and MedicineArizona State UniversityTempeUSA
  5. 5.Structural Biology Research Unit, Department of Clinical Laboratory SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations