A local strain of Paprika mild mottle virus breaks L3 resistance in peppers and is accelerated in Tomato brown rugose fruit virus-infected Tm-22-resistant tomatoes
Abstract
During October 2014, unfamiliar mild mosaic and mottling symptoms were identified on leaves of pepper (Capsicum chinense cv. Habanero) seedlings grown in the Arava valley in Israel 2–3 weeks post planting. Symptomatic plants were tested positive by ELISA using laboratory-produced antisera for tobamovirus species. Typical tobamovirus rod-shaped morphology was observed by transmission electron microscopy (TEM) analysis of purified virion preparation that was used for mechanical inoculation of laboratory test plants for the completion of Koch’s postulates. The complete viral genome was sequenced from small interfering RNA purified from symptomatic pepper leaves and fruits by next-generation sequencing (NGS) using Illumina MiSeq platform. The contigs generated by the assembly covered 80% of the viral genome. RT-PCR amplification and Sanger sequencing were employed in order to validate the sequence generated by NGS technology. The nucleotide sequence of the complete viral genome was 99% identical to the complete genome of Paprika mild mottle virus isolate from Japan (PaMMV-J), and the deduced amino acid sequence was 99% identical to PaMMV-J protein. Amplicons from seed RNA showed 100% identity to the viral isolate from the collected symptomatic pepper plants. Partial host range analysis revealed a slow development of systemic infection in inoculated tomato plants (Lycopersicon esculentum). Interestingly, double inoculation of susceptible wild-type tomato plants and Tm-22-resistant tomato plants with the PaMMV-IL and Tomato brown rugose fruit virus (ToBRFV) resulted in accelerated viral expression in the plants.
Keywords
Tobamovirus Virus transmissionNotes
Acknowledgements
We would like to acknowledge Dr. Nadav Elad from the Electron Microscopy Unit, Departments of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel for the TEM analysis. This work was supported by the Chief Scientist, Israel Ministry of Agriculture, Management of Tm-22 Tobamo breaker in tomato plants, initiative project number 261–1159. Contribution number 575/17 from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
References
- 1.A.T.B. Rast, Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent 44, 617–622 (1979)Google Scholar
- 2.I.W. Boukema, Euphytica 29, 433–439 (1980)CrossRefGoogle Scholar
- 3.I. Tobias, A.T.B. Rast, D. Maat, Eur. J. Plant Pathol. 88, 257–268 (1982)Google Scholar
- 4.C. Wetter, M. Conti, D. Altschuh, R. Tabillion, M. Van Regenmortel, Phytopathology 74, 405–410 (1984)CrossRefGoogle Scholar
- 5.A.A. Brunt, K. Crabtree, M. Dallwitz, A. Gibbs, L. Watson, Viruses of plants. Descriptions and lists from the VIDE database (Cab International, Wallingford, 1996)Google Scholar
- 6.I. Garcia-Luque, M. Ferrero, J. Rodríguez, E. Alonso, A. De La Cruz, A. Sanz, C. Vaquero, M. Serra, J. Diaz-Ruiz, Arch. Virol. 131, 75–88 (1993)CrossRefPubMedGoogle Scholar
- 7.C.D. Dardick, Z. Taraporewala, B. Lu, J.N. Culver, Mol. Plant Microbe Interact. 12, 247–251 (1999)CrossRefGoogle Scholar
- 8.A. De La Cruz, L. Lopez, F. Tenllado, J. Diaz-Ruiz, A. Sanz, C. Vaquero, M. Serra, I. Garcia-Luque, Mol. Plant Microbe Interact. 10, 107–113 (1997)CrossRefPubMedGoogle Scholar
- 9.P. Gilardi, I. Garcia-Luque, M. Serra, Mol. Plant Microbe Interact. 11, 1253–1257 (1998)CrossRefGoogle Scholar
- 10.P. Gilardi, I. Garcia-Luque, M. Serra, J. Gen. Virol. 85, 2077–2085 (2004)CrossRefPubMedGoogle Scholar
- 11.M.R. del Pino, A. Moreno, M.G. de Lacoba, S. Castillo-Lluva, P. Gilardi, M. Serra, I. Garcia-Luque, Arch. Virol. 148, 2115–2135 (2003)CrossRefGoogle Scholar
- 12.H. Hamada, S. Takeuchi, Y. Morita, H. Sawada, A. Kiba, Y. Hikichi, J. Gen. Plant Pathol. 69, 199–204 (2003)Google Scholar
- 13.K. Matsumoto, H. Sawada, K. Matsumoto, H. Hamada, E. Yoshimoto, T. Ito, S. Takeuchi, S. Tsuda, K. Suzuki, K. Kobayashi, Arch. Virol. 153, 645 (2008)CrossRefPubMedGoogle Scholar
- 14.H. Sawada, S. Takeuchi, H. Hamada, A. Kiba, M. Matsumoto, Y. Hikichi, J. Jpn. Soc. Hortic. Sci. 73, 552–557 (2004)CrossRefGoogle Scholar
- 15.K. Gebre-Selassie, G. Marchoux, J. Phytopathol. 131, 275–289 (1991)CrossRefGoogle Scholar
- 16.H. Mizumoto, K. Kimura, A. Kiba, Y. Hikichi, Virus Res. 153, 205–211 (2010)CrossRefPubMedGoogle Scholar
- 17.E. Stoimenova, A. Yordanova, Biotechnol Biotec Equip 19, 30–35 (2005)CrossRefGoogle Scholar
- 18.N. Luria, E. Smith, V. Reingold, I. Bekelman, M. Lapidot, I. Levin, N. Elad, Y. Tam, N. Sela, A. Abu-Ras, N. Ezra, A. Haberman, L. Yitzhak, O. Lachman, A. Dombrovsky, PLoS ONE 12, e0170429 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
- 19.A. Dombrovsky, R. Sapkota, O. Lachman, M. Pearlsman, Y. Antignus, Plant. Pathol. 62, 450–459 (2013)CrossRefGoogle Scholar
- 20.U.K. Laemmli, Nature 227, 680–685 (1970)CrossRefPubMedGoogle Scholar
- 21.M.F. Clark, M.J. Adams, J. Gen. Virol. 34, 475–483 (1977)CrossRefPubMedGoogle Scholar
- 22.J. Cohen, M. Zeidan, A. Rosner, A. Gera, Phytopathology 90, 340–344 (2000)CrossRefPubMedGoogle Scholar
- 23.A. Rosner, I. Ginzburg, M. Bar-Joseph, J. Gen. Virol. 64(Pt 8), 1757–1763 (1983)CrossRefPubMedGoogle Scholar
- 24.A. Dombrovsky, M. Pearlsman, O. Lachman, Y. Antignus, Phytoparasitica 37, 477–483 (2009)CrossRefGoogle Scholar
- 25.N. Sela, N. Luria, A. Dombrovsky, J. Virol. 86, 7721 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
- 26.D.T. Jones, W.R. Taylor, J.M. Thornton, Bioinformatics 8, 275–282 (1992)CrossRefGoogle Scholar
- 27.K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, Mol. Biol. Evol. 30, 2725–2729 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
- 28.J.S. Tung, C.A. Knight, Virol 48, 574–581 (1972)CrossRefGoogle Scholar
- 29.H. Hamada, S. Takeuchi, K. Akinori, S. Tsuda, Y. Hikichi, T. Okuno, J. Gen. Plant Pathol. 68, 155–162 (2002)CrossRefGoogle Scholar
- 30.L. Velasco, D. Janssen, L. Ruiz-Garcia, E. Segundo, I.M. Cuadrado, J. Virol. Methods 106, 135–140 (2002)CrossRefPubMedGoogle Scholar
- 31.Y. Antignus, O. Lachman, M. Pearlsman, L. Maslenin, A. Rosner, Plant Dis. 92, 1033–1037 (2008)CrossRefGoogle Scholar
- 32.S. Tsuda, M. Kirita, Y. Watanabe, Mol. Plant Microbe Interact. 11, 327–331 (1998)CrossRefPubMedGoogle Scholar
- 33.H. Hamada, R. Tomita, Y. Iwadate, K. Kobayashi, I. Munemura, S. Takeuchi, Y. Hikichi, K. Suzuki, Virus Genes 34, 205–214 (2007)CrossRefPubMedGoogle Scholar
- 34.V. Pallas, J.A. García, J. Gen. Virol. 92, 2691–2705 (2011)CrossRefPubMedGoogle Scholar
- 35.N. Salem, A. Mansour, M. Ciuffo, B. Falk, M. Turina, Arch. Virol. 161, 503–506 (2016)CrossRefPubMedGoogle Scholar
- 36.R. Li, S. Gao, Z. Fei, K.-S. Ling, Genome Announc. 1, e00794-00713 (2013)Google Scholar
- 37.C.G. Webster, E.N. Rosskopf, L. Lucas, H.C. Mellinger, S. Adkins, Plant Health Prog. 15, 151–152 (2014)Google Scholar
- 38.A. Dombrovsky, L.T. Tran-Nguyen, R.A. Jones, Annu. Rev. Phytopathol. 55, 231–256 (2017)CrossRefPubMedGoogle Scholar
- 39.D. Altschuh, A.M. Lesk, A.C. Bloomer, A. Klug, J. Mol. Biol. 193, 693–707 (1987)CrossRefPubMedGoogle Scholar
- 40.H. Hamada, S. Takeuchi, A. Kiba, S. Tsuda, K. Suzuki, Y. Hikichi, T. Okuno, J. Gen. Plant Pathol. 71, 90–94 (2005)CrossRefGoogle Scholar