Veterinary Research Communications

, Volume 43, Issue 2, pp 45–65 | Cite as

Localization profiles of natriuretic peptides in hearts of pre-hibernating and hibernating Anatolian ground squirrels (Spermophilus xanthoprymnus)

  • Mustafa ÖztopEmail author
  • Mehmet Özbek
  • Narin Liman
  • Feyzullah Beyaz
  • Emel Ergün
  • Levent Ergün
Original Article


The Anatolian ground squirrel (Spermophilus xanthoprymnus) is a typical example of true mammalian hibernators. In order to adapt to extreme external and internal environments during hibernation, they lower their body temperatures, heart rates and oxygen consumption; however, pathological events such as ischemia and ventricular fibrillation do not occur in their cardiovascular systems. During the hibernation, maintenance of cardiac function is very important for survival of ground squirrels. Natriuretic peptides (NPs) are key factors in the regulation of cardiovascular hemostasis. Since NPs’ role on the protection of heart during hibernation are less clear, the aim of this study was to investigate dynamic changes in NPs content in the cardiac chambers and to reveal the possible role of NPs on establishing cardiac function in ground squirrel during hibernation using immunohistochemistry. The immunohistochemical results indicate that cardiac NP expressions in atrial and ventricular cardiomyocytes were different from each other and were sex-independent. ANP and BNP were expressed in a chamber-dependent manner in female and male squirrel hearts. Furthermore, cardiac NPs expression levels in hibernation period were lower than those at the pre-hibernation period. During prehibernation period, ANP, BNP and CNP were expressed in the white and beige adipocytes of epicardial adipose tissue (EAT); while during hibernation period, the brown adipocytes of EAT were positive for BNP and CNP. These data suggest that the hibernation-dependent reduction in levels of NPs, particularly ANP, in cardiac chambers and EAT may be associated with low heart rate and oxygen consumption during hibernation. However, further studies are needed to better delineate the roles of NPs during the hibernation.


Natriuretic peptides Hibernation Anatolian ground squirrel Spermophilus xanthoprymnus Adipose tissue 


Author contributions

Conceived of and designed the experiments: MÖ1, MÖ, NL, FB. Performed the experiments: NL, FB. Analyzed the data: MÖ1, MÖ. Contributed reagents/materials/analysis tools: MÖ1, MÖ, NL, FB, EE, LE. Wrote the paper: MÖ1, NL.

Compliance with ethical standards

Conflict of interest

No potential conflicts of interest were disclosed.


  1. Abrosimov DA, Yakovleva EI, Bugrova ML (2015) Quantitative assay of brain natriuretic peptide in rat cardiomyocytes in the early postreperfusion period. Cell and Tissue Biol 9:336-339Google Scholar
  2. Addario C, Milanesi G, Vaccarone R, Barni S, Gerzeli G, Fenoglio C (2004) Expression of atrial natriuretic peptide in the heart of active and hibernating frog. Ital J Zool 71:69-72Google Scholar
  3. Aldiss P, Davies G, Woods R, Budge H, Sacks HS, Symonds ME (2017) ‘Browning’ the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol 228:265–274CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aoki CA, Maldonado CA, Forssmann WG (1989) Seasonal changes of the endocrine heart. In: Forssmann WG, Scheuermann DW and Alt J (ed) Functional Morphology of the Endocrine Heart, Springer-Verlag, New York, pp 61-68Google Scholar
  5. Arendt T, Stieler J, Strijkstra AM, Hut RA, Rüdiger J, Van der Zee EA, Harkany T, Holzer M, Härtig W (2003) Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals. J Neurosci 23:6972–6981CrossRefPubMedGoogle Scholar
  6. Arjamaa O (2014) Physiology of natriuretic peptides: the volume overload hypothesis revisited. World J Cardiol 6:4–7CrossRefPubMedPubMedCentralGoogle Scholar
  7. Ballinger MA, Andrews MT (2018) Nature’s fat-burning machine: brown adipose tissue in a hibernating mammal. J Exp Biol 221:jeb162586CrossRefPubMedGoogle Scholar
  8. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:1244–1253CrossRefGoogle Scholar
  9. Biondo AW, Ehrhart EJ, Sisson DD, Bulmer BJ, De Morais HS, Solter PF (2003) Immunohistochemistry of atrial and brain natriuretic peptides in control cats and cats with hypertrophic cardiomyopathy. Vet Pathol 40:501–506CrossRefPubMedGoogle Scholar
  10. Bonis A, Anderson L, Talhourne G et al (2018) Cardiovascular resistance to thrombosis in 13-lined ground squirrels. J Comp Physiol B 189:167–177. CrossRefPubMedGoogle Scholar
  11. Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122:1022–1036CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bouma HR (2013) Immunological aspects of hibernation as leads in the prevention of acute organ injury. Dissertation, University of GroningenGoogle Scholar
  13. Buck MJ, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Phys 279:255–262Google Scholar
  14. Cameron VA, Rademaker MT, Ellmers LJ, Espiner EA, Nicholls MG, Richards AM (2000) Atrial (ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct. Endocrinology 141:4690–4697CrossRefPubMedGoogle Scholar
  15. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefGoogle Scholar
  16. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181CrossRefGoogle Scholar
  17. Chapeau C, Gutkowska J, Schiller PW, Milne RW, Thibault G, Garcia R, Genest J, Cantin M (1985) Localization of immunoreactive synthetic atrial natriuretic factor (ANF) in the heart of various animal species. J Histochem Cytochem 33:541–550CrossRefPubMedGoogle Scholar
  18. Colbatzky F, Vollmar A, Monch U, Hermanns W (1993) Synthesis and distribution of atrial natriuretic peptide (ANP) in hearts from normal dogs and those with cardiac abnormalities. J Comp Pathol 108:149–163CrossRefPubMedGoogle Scholar
  19. Collins S (2014) A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol 10:157–163CrossRefPubMedGoogle Scholar
  20. Collins S, Bordicchia M (2013) Heart hormones fueling a fire in fat. Adipocyte 2:104–108CrossRefPubMedPubMedCentralGoogle Scholar
  21. Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, Segnani C, Prescimone T, Giannessi D, Mattii L (2011) Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides 32:1713–1718CrossRefPubMedGoogle Scholar
  22. Espiner EA, Richards AM, Yandle TG, Nicholls MG (1995) Natriuretic hormones. Endocrinol Metab Clin N Am 24:481–509CrossRefGoogle Scholar
  23. Federico C (2010) Natriuretic peptide system and cardiovascular disease. Heart Views 11:10–15PubMedPubMedCentralGoogle Scholar
  24. Fedorov VV, Li L, Glukhov A, Shishkina I, Aliev RR, Mikheeva T, Nikolski VP, Rosenshtrukh LV, Efimov IR (2005) Hibernator Citellus undulatus maintains safe cardiac conduction and is protected against tachyarrhythmias during extreme hypothermia: possible role of Cx43 and Cx45 up-regulation. Heart Rhythm 2:966–975CrossRefPubMedGoogle Scholar
  25. Fitzgibbons TP, Czech MP (2014) Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc 3:e000582CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fleck CC, Carey HV (2005) Modulation of apoptotic pathways in intestinal mucosa during hibernation. Am J Phys Regul Integr Comp Phys 289:586–595Google Scholar
  27. Giralt M, Villarroya F (2013) White, brown, beige/brite: different adipose cells for different functions? Endocrinology 154:2992–3000CrossRefPubMedGoogle Scholar
  28. Green C (2000) Mammalian hibernation: lessons for organ preparation? Cryo Letters 21:91–98PubMedGoogle Scholar
  29. Gür H (2010) Why do Anatolian ground squirrels exhibit a Bergmannian size pattern? A phylogenetic comparative analysis of geographic variation in body size. Biol J Linn Soc 100:695–710CrossRefGoogle Scholar
  30. Herinckx G, Hussain N, Opperdoes FR, Storey KB, Rider MH, Vertommen D (2017) Changes in the phosphoproteome of brown adipose tissue during hibernation in the ground squirrel, Ictidomys tridecemlineatus. Physiol Genomics 49:462–472CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hu W, Zhou PH, Zhang XB, Xu CG, Wang W (2015) Plasma concentrations of adrenomedullin and natriuretic peptides in patients with essential hypertension. Exp Ther Med 9:1901-1908Google Scholar
  32. Hut RA, Barnes BM, Daan S (2002) Body temperature patterns before, during, and after semi- natural hibernation in the European ground squirrel. J Comp Physiol B 172:47–58CrossRefPubMedGoogle Scholar
  33. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22:450-457Google Scholar
  34. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543CrossRefPubMedGoogle Scholar
  35. Ignat'ev DA, Sukhova GS, Sukhov VP (2001) Analysis of changes in heart rate and temperature of the ground squirrel Citellus undulatus in various physiological states. Zh Obshch Biol 62:66–77PubMedGoogle Scholar
  36. Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec (Hoboken) 296:378–381CrossRefGoogle Scholar
  37. Johansson BW (1996) The hibernator heart: nature’s model of resistance to ventricular fibrillation. Cardiovasc Res 31:828–832Google Scholar
  38. Kimura H, Nagoshi T, Yoshii A, Kashiwagi Y, Tanaka Y, Ito K, Yoshino T, Tanaka TD, Yoshimura M (2017) The thermogenic actions of natriuretic peptide in brown adipocytes: the direct measurement of the intracellular temperature using a fuorescent thermoprobe. Sci Rep 7:12978CrossRefPubMedPubMedCentralGoogle Scholar
  39. Komatsu Y, Nakao K, Itoh H, Suga S, Ogawa Y, Imura H (1992) Vascular natriuretic peptide. Lancet 340:622CrossRefPubMedGoogle Scholar
  40. Kuehnl A, Pelisek J, Bruckmeier M, Safi W, Eckstein HH (2013) Comparative measurement of CNP and NT-proCNP in human blood samples: a methodological evaluation. J Negat Results Biomed 12:7Google Scholar
  41. Lidell ME, Betz MJ, Enerbäck S (2014) Two types of brown adipose tissue in humans. Adipocyte 3:63–66CrossRefPubMedGoogle Scholar
  42. Liman N (2017) Heat shock proteins (HSP)-60, −70, −90 and 105 display variable spatial and temporal immunolocalization patterns in the involuting rat uterus. Anim Reprod Sci 14:1072–1086CrossRefGoogle Scholar
  43. Logan SM, Storey KB (2017) Avoiding apoptosis during mammalian hibernation. Temperature 4:15–17CrossRefGoogle Scholar
  44. Lu J, Pan SS (2016) Elevated C-type natriuretic peptide elicits exercise preconditioning-induced cardioprotection against myocardial injury probably via the up-regulation of NPR-B. J Physiol Sci 67:475–487CrossRefPubMedGoogle Scholar
  45. Luchner A, Stevens TL, Borgeson DD, Redfield M, Wei CM, Porter JG, Burnett JC Jr (1998) Differential atrial and ventricular expression of myocardial BNP during evolution of heart failure. Am J Phys 274:H1684–H1689Google Scholar
  46. Lumsden NG, Khambata RS, Hobbs AJ (2010) C-type natriuretic peptide (CNP): cardiovascular roles and potential as a therapeutic target. Curr Pharm Des 16:4080–4088CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luu BE, Tessier SN, Duford DL, Storey KB (2015) The regulation of troponins I, C and ANP by GATA4 and Nkx2-5 in heart of hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus. PLoS One 10:e0117747CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lyman C, Chatfield P (1955) Physiology of hibernation in mammals. Physiol Rev 35:403–425CrossRefPubMedGoogle Scholar
  49. Melvin RG, Andrews MT (2009) Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol Metab 20:490–498CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mifune H, Richter R, Forssmann WG (1995) Detection of immunoreactive atrial and brain natriuretic peptides in the equine atrium. Anat Embryol 192:117–121CrossRefPubMedGoogle Scholar
  51. Mifune H, Suzuki S, Nokihara K, Noda Y (1996) Distribution of immunoreactive atrial and brain natriuretic peptides in the heart of the chicken, quail, snake and frog. Exp Anim 45:125-133Google Scholar
  52. Mifune H, Honda J, Takamori S, Sugiyama F, Yagami K, Suzuki S (2004) A-type natriuretic peptide level in hypertensive transgenic mice. Exp Anim 53:9–11CrossRefGoogle Scholar
  53. Mifune Н, Nishi Y, Tajiri Y, Yabuki A (2012) Different A-type natriuretic peptide level in five strains of mice. J Vet Med Sci 74:499–502CrossRefPubMedGoogle Scholar
  54. Milsom WK, Zimmer MB, Harris MB (1999) Regulation of cardiac rhythm in hibernating mammals. Comp Biochem Physiol A Physiol 124:383–391CrossRefGoogle Scholar
  55. Moe GW, Grima EA, Angus C, Wong NL, Hu DC, Howard RJ, Armstrong PW (1991) Response of atrial natriuretic factor to acute and chronic increases of atrial pressures in experimental heart failure in dogs. Role of changes in heart rate, atrial dimension, and cardiac tissue concentration. Circulation 83:1780–1787CrossRefPubMedGoogle Scholar
  56. Moe GW, Grima EA, Wong NL, Howard RJ, Armstrong PW (1993) Dual natriuretic peptide system in experimental heart failure. J Am Coll Cardiol 22:891–898CrossRefPubMedGoogle Scholar
  57. Moe GW, Grima EA, Wong NLY, Howard RJ, Armstrong PW (1996) Plasma and cardiac tissue atrial and brain natriuretic peptides in experimental heart failure. J Am Coll Cardiol 27:720–727CrossRefPubMedGoogle Scholar
  58. Mukoyama M, Nakao K, Hosoda K, Suga S, Saito Y, Ogawa Y, Shirakami G, Jougasaki M, Obata K, Yasue H (1991) Brain natriuretic peptide as a novel cardiac hormone in humans: evidence for an exquisite dual natriuretic peptide system, ANP and BNP. J Clin Invest 87:1402–1412CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nakagawa M, Tanaka I, Suga S, Ogawa Y, Tamura N, Goto M, Sugawara A, Yoshimasa T, Itoh H, Mukoyama M, Nakao K (1995) Preparation of a monoclonal antibody against mouse brain natriuretic peptide (BNP) and tissue distribution of BNP in mice. Clin Exp Pharmacol Physiol Suppl 22:S186–S187CrossRefPubMedGoogle Scholar
  60. Nazario B, Hu RM, Pedram A, Prins B, Levin ER (1995) Atrial and brain natriuretic peptides stimulate the production and secretion of C-type natriuretic peptide from bovine aortic endothelial cells. J Clin Invest 95:1151–1157CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nemer M, Lavigne JP, Drouin J, Thibault G, Gannon M, Antakly T (1986) Expression of atrial natriuretic factor gene in heart ventricular tissue. Peptides 7:1147–1152CrossRefPubMedGoogle Scholar
  62. Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328CrossRefPubMedGoogle Scholar
  63. Ogawa Y, Nakao K, Mukoyama M, Hosoda K, Shirakami G, Arai H, Saito Y, Suga S, Jougasaki M, Imura H (1991) Natriuretic peptides as cardiac hormones in normotensive and spontaneously hypertensive rats. The ventricle is a major site of synthesis and secretion of brain natriuretic peptide. Circ Res 69:491–500CrossRefPubMedGoogle Scholar
  64. Olson ME, McCabe K (1986) Anesthesia in the Richardson’s ground squirrel: comparison of ketamine, ketamine and xylazine, droperidol and fentanyl, and sodium pentobarbital. J Am Vet Med Assoc 189:1035–1037PubMedGoogle Scholar
  65. Osman AH, Yuge S, Hyodo S, Sato S, Maeda S, Marie H, Caceci T, Birukawa N, Urano A, Naruse K, Naruse M, Takei Y (2004) Molecular identification and immunohistochemical localization of atrial natriuretic peptide in the heart of the dromedary camel (Camelus dromedarius). Comp Biochem Physiol A Mol Integr Physiol 139:417–424CrossRefPubMedGoogle Scholar
  66. Özbek M, Bozkurt MF, Beyaz F, Ergün E, Ergün L (2018) Expression profile of some neuronal and glial cell markers in the ovine ileal enteric nervous system during prenatal development. Acta Histochem 120:768–779CrossRefPubMedGoogle Scholar
  67. Öztop M, Çınar K, Türk S (2018) Immunolocalization of natriuretic peptides and their receptors in goat (Capra hircus) heart. Biotech Histochem 93:389–404CrossRefPubMedGoogle Scholar
  68. Payvar S, Spertus JA, Miller AB, Casscells SW, Pang PS, Zannad F, Swedberg K, Maggioni AP, Reid KJ, Gheorghiade M, for the Efficacy of Vasopressin Antagonism in Heart Failure Outcome Study with Tolvaptan (EVEREST) Investigators (2013) Association of low body temperature and poor outcomes in patients admitted with worsening heart failure: a substudy of the efficacy of vasopressin antagonism in heart failure outcome study with Tolvaptan (EVEREST) trial. Eur J Heart Fail 15:1382–1389CrossRefPubMedGoogle Scholar
  69. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72CrossRefGoogle Scholar
  70. Prati F, Arbustini E, Labellarte A, Sommariva L, Pawlowski T, Manzoli A, Pagano A, Motolese M, Boccanelli A (2003) Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J 24:329–336CrossRefPubMedGoogle Scholar
  71. Rademaker MT, Richards AM (2005) Cardiac natriuretic peptides for cardiac health. Clin Sci (Lond) 108:23–36CrossRefGoogle Scholar
  72. Ratigan ED, McKay DB (2016) Exploring principles of hibernation for organ preservation. Transplant Rev (Orlando) 30:13-19Google Scholar
  73. Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, Karas J, Optican R, Bahouth SW, Garrett E, Wolf RY, Carter RA, Robbins T, Wolford D, Samaha J (2009) Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab 94:3611–3615CrossRefPubMedGoogle Scholar
  74. Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, Cinti S, Symonds ME (2013) Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab 98:1448–1455CrossRefGoogle Scholar
  75. Sagnella GA (1998) Measurement and significance of circulating natriuretic peptides in cardiovascular disease. Clin Sci (Lond) 95:519–529CrossRefGoogle Scholar
  76. Sandovici M, Henning R, Hut RA, Strijkstra AM, Epema AH, van Goor H, Deelman LE (2004) Differential regulation of glomerular and interstitial endothelial nitric oxide synthase expression in the kidney of hibernating ground squirrel. Nitric Oxide 11:194–200CrossRefPubMedGoogle Scholar
  77. Satoh K, Masuda T, Hasegawa N, Marumo F, Kikawada R (1989) The concentration of atrial natriuretic peptide (ANP) in plasma and atrial tissue of canines with acute heart failure induced by reversible aortic or mitral regurgitation. Nihon Naibunpi Gakkai Zasshi 65:794-806Google Scholar
  78. Sergeeva IA, Cristoffels VM (2013) Regulation of expression of atrial and brain natriuretic peptide, biomarkers for heart development and disease. Biochim Biophys Acta (BBA) - Mol Basis Dis 1832:2403–2413CrossRefGoogle Scholar
  79. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203CrossRefPubMedGoogle Scholar
  80. Sidossis L, Kajimura S (2015) Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest 125:478–486CrossRefPubMedPubMedCentralGoogle Scholar
  81. Sirithunyanont C, Leowattana W, Sukumalchantra Y, Chaisupamonkollarp S, Watanawaroon S, Chivatanaporn B, Bhuriponyo K, Mahanonda N (2003) Role of the plasma brain natriuretic peptide in differentiating patients with congestive heart failure from other diseases. J Med Assoc Thail 86:87–95Google Scholar
  82. Storey KB, Storey JM (2010) Metabolic rate depression: the biochemistry of mammalian hibernation. Clin Chem 52:77–108CrossRefGoogle Scholar
  83. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863–870CrossRefPubMedGoogle Scholar
  84. Suffee N, Moore-Morris T, Farahmand P et al (2017) Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria. Proc Natl Acad Sci U S A 114(5):771–780CrossRefGoogle Scholar
  85. Talaei F, Hylkema MN, Bouma HR, Boerema AS, Strijkstra AM, Henning RH, Schmidt M (2011) Reversible remodelling of lung tissue during hibernation in the Syrian hamster. J Exp Biol 214:1276–1282CrossRefPubMedGoogle Scholar
  86. Talman AH, Psaltis PJ, Cameron JD, Meredith IT, Seneviratne SK, Wong DT (2014) Epicardial adipose tissue: far more than a fat depot. Cardiovasc Diagn Ther 4:416–429PubMedPubMedCentralGoogle Scholar
  87. Thibault G, Charbonneau C, Bilodeau J, Schiffrin EL, Garcia R (1992) Rat brain natriuretic peptide is localized in atrial granules and released into the circulation. Am J Phys 263:R301–R309Google Scholar
  88. Tøien Ø, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Phys Regul Integr Comp Phys 281:572–583Google Scholar
  89. Torres-Courchoud I, Chen HH (2016) B-type natriuretic peptide and acute heart failure: fluid homeostasis, biomarker and therapeutics. Rev Clin Esp 216:393–398CrossRefPubMedGoogle Scholar
  90. Villar I, Panayiotou CM, Sheraz A, Madhani M, Scotland RS, Nobles M, Kemp-Harper B, Ahluwalia A, Hobbs AJ (2007) Definitive role for natriuretic peptide receptor-C in mediating the vasorelaxant activity of C-type natriuretic peptide and endothelium-derived hyperpolarising factor. Cardiovasc Res 74:515–525CrossRefPubMedPubMedCentralGoogle Scholar
  91. Viscarra JA, Ortiz RM (2013) Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation. Metabolism 62:889–897CrossRefPubMedPubMedCentralGoogle Scholar
  92. Woodard GE, Rosado JA (2008) Natriuretic peptides in vascular physiology and pathology. Int Rev Cell Mol Biol 268:59–93CrossRefPubMedGoogle Scholar
  93. Woodard GE, Rosado JA, Brown J (2002) Expression and control of C-type natriuretic peptide in rat vascular smooth muscle cells. Am J Phys Regul Integr Comp Phys 282:156–165Google Scholar
  94. Yamaji T, Ishibashi M, Takaku F, Sato F, Kamoi K, Nakaoka H, Fujii J, Hasegawa K, Morii H (1987) Clinical significance of atrial natriuretic peptide in human blood. Jpn J Med 26:207–211CrossRefPubMedGoogle Scholar
  95. Yamane T, Takemura N, Inoue H, Soeta S, Oishi M, Amasaki H (2011) Preliminary immunohistochemical study of natriuretic peptide receptor localization in canine and feline heart. J Vet Med Sci 73:375–378CrossRefPubMedGoogle Scholar
  96. Yasue H, Yoshimura M, Sumida H, Kikuta K, Kugiyama K, Jougasaki M, Ogaw H, Okumura K, Mukoyama M, Nakao K (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90:195–203CrossRefPubMedGoogle Scholar
  97. Zancanaro C, Malatesta M, Mannello F, Vogel P, Fakan S (1999) The kidney during hibernation and arousal from hibernation. A natural model of organ preservation during cold ischemia and reperfusion. Nephrol Dial Transplant 14:1982–1990CrossRefPubMedGoogle Scholar
  98. Zatzman ML, Thornhill GV (1989) Plasma levels of atrial natriuretic factor in nonhibernating and hibernating marmots. Cryobiology 26:196–198CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Science and ArtMehmet Akif Ersoy UniversityBurdurTurkey
  2. 2.Department of Histology and Embryology, Faculty of Veterinary MedicineMehmet Akif Ersoy UniversityBurdurTurkey
  3. 3.Department of Histology and Embryology, Faculty of Veterinary MedicineErciyes UniversityKayseriTurkey
  4. 4.Department of Histology and Embryology, Faculty of Veterinary MedicineAnkara UniversityAnkaraTurkey

Personalised recommendations