Advertisement

Triggers of NLRC4 and AIM2 inflammasomes induce porcine IL-1β secretion

  • Huijeong Ahn
  • Jeongeun Kim
  • Sungkyun Kwon
  • Pyeung-Hyeun Kim
  • Hyuk Moo Kwon
  • Eunsong Lee
  • Geun-Shik Lee
Original Article
  • 116 Downloads

Abstract

Pigs are an important livestock and serve as a large animal model due to physiological and anatomical similarities with humans. Thus, components of the porcine immune system such as inflammasomes need to be characterized for disease control, vaccination, and translational research purposes. Previously, we and others elucidated porcine nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family Pyrin domain containing 3 (NLRP3) inflammasome activation. However, until now, porcine NLR family caspase recruitment domain (CARD)-containing 4 (NLRC4) and absent in melanoma 2 (AIM2) inflammasomes have been not well studied. In this study, we treated well defined NLRC4 and AIM2 inflammasome triggers to porcine peripheral blood mononuclear cells (PBMCs) and murine bone-marrow derived macrophages (BMDMs) and observed interleukin (IL)-1β maturation as a readout of inflammasome activation. NLRC4 (flagellin) and AIM2 (dsDNA) triggers led to IL-1β secretion in both porcine PBMCs and mice macrophages. In addition, porcine and mouse NLRC4 and AIM2 inflammasomes responded differently to NLRP3 inhibitors. Bacterial inflammasome triggers, Salmonella enterica serovar Typhimurium, Listeria monocytogenes, and Escherichia coli, also induced IL-1β secretion in porcine PBMCs. Taken together, we suggest that known triggers of NLRC4 and AIM2 inflammasomes in mice induce IL-1β secretion in porcine PBMCs.

Keywords

Pig Interleukin-1beta Macrophages NLRC4 AIM2 

Notes

Acknowledgements

This research was supported by 2016 Research Grant from Kangwon National University (No. 520160446), and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A2A2A01004183, NRF-2016R1A4A1010115, and NRF-2018R1A2B2004097).

Authors’ contributions

Ahn, H. and Kim, J. and Lee, G.-S. designed the research; Ahn, H. Kim, J. and Kwon, S. performed the experiments; Ahn, H. Kwon, H.M., Kim, P.-H., Lee, E. and Lee, G.-S. analyzed the results; Ahn, H. Kim, J. and Lee, G.-S. wrote the paper; Kim, P.-H., Kwon, H.M., and Lee, E. edited and commented on the manuscript.

Compliance with ethical standards

Competing interests

The author has no conflict of interest to declare.

References

  1. Ahn H, Lee GS (2017) Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 24:77–86.  https://doi.org/10.1016/j.phymed.2016.11.019 CrossRefGoogle Scholar
  2. Ahn H, Kim J, Jeung EB, Lee GS (2014) Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219:315–322.  https://doi.org/10.1016/j.imbio.2013.11.003 CrossRefPubMedGoogle Scholar
  3. Ahn H, Kim J, Lee MJ, Kim YJ, Cho YW, Lee GS (2015) Methylsulfonylmethane inhibits NLRP3 inflammasome activation. Cytokine 71:223–231.  https://doi.org/10.1016/j.cyto.2014.11.001 CrossRefPubMedGoogle Scholar
  4. Ahn H, Kang SG, Yoon SI, Kim PH, Kim D, Lee GS (2016) Poly-gamma-glutamic acid from Bacillus subtilis upregulates pro-inflammatory cytokines while inhibiting NLRP3, NLRC4 and AIM2 inflammasome activation. Cell Mol Immunol.  https://doi.org/10.1038/cmi.2016.13
  5. Ahn H et al (2017) Methylene blue inhibits NLRP3, NLRC4, AIM2, and non-canonical inflammasome activation. Sci Rep 7:12409.  https://doi.org/10.1038/s41598-017-12635-6 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Amer A et al (2006) Regulation of legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223.  https://doi.org/10.1074/jbc.M604933200 CrossRefPubMedGoogle Scholar
  7. Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791.  https://doi.org/10.4049/jimmunol.0901363 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G, Hornung V (2011) Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187:613–617.  https://doi.org/10.4049/jimmunol.1100613 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V (2012) NLRP3 inflammasome activity is negatively controlled by miR-223. J Immunol 189:4175–4181.  https://doi.org/10.4049/jimmunol.1201516 CrossRefPubMedGoogle Scholar
  10. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109.  https://doi.org/10.1038/nrmicro2070 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Boltz-Nitulescu G, Wiltschke C, Holzinger C, Fellinger A, Scheiner O, Gessl A, Forster O (1987) Differentiation of rat bone marrow cells into macrophages under the influence of mouse L929 cell supernatant. J Leukoc Biol 41:83–91CrossRefPubMedGoogle Scholar
  12. Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420.  https://doi.org/10.1038/nri.2016.58 CrossRefPubMedGoogle Scholar
  13. Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB (2012) Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med 209:1969–1983.  https://doi.org/10.1084/jem.20121960 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46:1140–1146.  https://doi.org/10.1038/ng.3089 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen IY, Ichinohe T (2015) Response of host inflammasomes to viral infection. Trends Microbiol 23:55–63.  https://doi.org/10.1016/j.tim.2014.09.007 CrossRefPubMedGoogle Scholar
  16. Cunha LD et al (2017) AIM2 engages active but unprocessed Caspase-1 to induce noncanonical activation of the NLRP3. Inflammasome Cell Reports 20:794–805.  https://doi.org/10.1016/j.celrep.2017.06.086 CrossRefPubMedGoogle Scholar
  17. Dawson HD, Smith AD, Chen C, Urban JF Jr (2017) An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome. Vet Microbiol 202:2–15.  https://doi.org/10.1016/j.vetmic.2016.05.013 CrossRefPubMedGoogle Scholar
  18. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677.  https://doi.org/10.1126/science.1156995 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Englen MD, Valdez YE, Lehnert NM, Lehnert BE (1995) Granulocyte/macrophage colony-stimulating factor is expressed and secreted in cultures of murine L929 cells. J Immunol Methods 184:281–283CrossRefPubMedGoogle Scholar
  20. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein Gasdermin D regulates Interleukin-1 secretion from living macrophages. Immunity 48:35–44 e36.  https://doi.org/10.1016/j.immuni.2017.11.013 CrossRefPubMedGoogle Scholar
  21. Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513.  https://doi.org/10.1038/nature07710 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147:227–235.  https://doi.org/10.1111/j.1365-2249.2006.03261.x PubMedPubMedCentralCrossRefGoogle Scholar
  23. Franchi L et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582.  https://doi.org/10.1038/ni1346 CrossRefPubMedGoogle Scholar
  24. Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37:3030–3039.  https://doi.org/10.1002/eji.200737532 CrossRefPubMedGoogle Scholar
  25. Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39:1003–1018.  https://doi.org/10.1016/j.immuni.2013.11.010 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Han BC et al (2017) Nonsaponin fractions of Korean red ginseng extracts prime activation of NLRP3 inflammasome. Journal of Ginseng Research 41:513–523.  https://doi.org/10.1016/j.jgr.2016.10.001 CrossRefPubMedGoogle Scholar
  27. Hornung V et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518.  https://doi.org/10.1038/nature07725 CrossRefPubMedPubMedCentralGoogle Scholar
  28. van Hout GP et al (2016) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehw247
  29. Kanneganti TD (2010) Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10:688–698.  https://doi.org/10.1038/nri2851 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kayagaki N et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121.  https://doi.org/10.1038/nature10558 CrossRefPubMedGoogle Scholar
  31. Kim S, Bauernfeind F, Ablasser A, Hartmann G, Fitzgerald KA, Latz E, Hornung V (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 40:1545–1551.  https://doi.org/10.1002/eji.201040425 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim J et al (2014a) Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 158:143–150.  https://doi.org/10.1016/j.imlet.2013.12.017 CrossRefPubMedGoogle Scholar
  33. Kim J et al (2014b) Korean red ginseng extracts inhibit NLRP3 and AIM2 inflammasome activation. Immunol Lett 158:143–150.  https://doi.org/10.1016/j.imlet.2013.12.017 CrossRefPubMedGoogle Scholar
  34. Kim J, Ahn H, Woo HM, Lee E, Lee GS (2014c) Characterization of porcine NLRP3 inflammasome activation and its upstream mechanism. Vet Res Commun 38:193–200.  https://doi.org/10.1007/s11259-014-9602-5 CrossRefPubMedGoogle Scholar
  35. Kim J, Ahn H, Woo HM, Lee E, Lee GS (2014d) Generation of liver-specific TGF-alpha and c-Myc-overexpressing fibroblasts for future creation of a liver cancer porcine model. Mol Med Rep 10:329–335.  https://doi.org/10.3892/mmr.2014.2217 CrossRefPubMedGoogle Scholar
  36. Lamkanfi M et al (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70.  https://doi.org/10.1083/jcb.200903124 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lara-Tejero M et al (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407–1412.  https://doi.org/10.1084/jem.20060206 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee GS et al (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127.  https://doi.org/10.1038/nature11588 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee J, Ahn H, Hong EJ, An BS, Jeung EB, Lee GS (2016) Sulforaphane attenuates activation of NLRP3 and NLRC4 inflammasomes but not AIM2 inflammasome. Cell Immunol 306-307:53-60  https://doi.org/10.1016/j.cellimm.2016.07.007
  40. Ma X et al (2016) Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget 7:36185–36197.  https://doi.org/10.18632/oncotarget.9154 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mariathasan S et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218.  https://doi.org/10.1038/nature02664 CrossRefPubMedGoogle Scholar
  42. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426CrossRefPubMedGoogle Scholar
  43. Miao EA et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A 107:3076–3080.  https://doi.org/10.1073/pnas.0913087107 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153.  https://doi.org/10.1016/j.immuni.2013.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–7157CrossRefPubMedGoogle Scholar
  46. Perera AP et al (2018) MCC950, a specific small molecule inhibitor of NLRP3 inflammasome attenuates colonic inflammation in spontaneous colitis mice. Sci Rep 8:8618.  https://doi.org/10.1038/s41598-018-26775-w CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rathinam VA et al (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150:606–619.  https://doi.org/10.1016/j.cell.2012.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ratsimandresy RA, Indramohan M, Dorfleutner A, Stehlik C (2017) The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway, Cellular & Molecular Immunology. 14:127–142.  https://doi.org/10.1038/cmi.2016.35
  49. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832.  https://doi.org/10.1016/j.cell.2010.01.040 CrossRefPubMedGoogle Scholar
  50. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356.  https://doi.org/10.1177/0300985811402846 CrossRefPubMedGoogle Scholar
  51. Tohno M, Shimosato T, Aso H, Kitazawa H (2011) Immunobiotic lactobacillus strains augment NLRP3 expression in newborn and adult porcine gut-associated lymphoid tissues. Vet Immunol Immunopathol 144:410–416.  https://doi.org/10.1016/j.vetimm.2011.09.010 CrossRefPubMedGoogle Scholar
  52. Tohno M, Shinkai H, Toki D, Okumura N, Tajima K, Uenishi H (2016) Identification of the Q969R gain-of-function polymorphism in the gene encoding porcine NLRP3 and its distribution in pigs of Asian and European origin. Immunogenetics 68:693–701.  https://doi.org/10.1007/s00251-016-0917-y CrossRefPubMedGoogle Scholar
  53. Watson PR, Paulin SM, Jones PW, Wallis TS (2000) Interaction of Salmonella serotypes with porcine macrophages in vitro does not correlate with virulence. Microbiology 146(Pt 7):1639–1649.  https://doi.org/10.1099/00221287-146-7-1639 CrossRefPubMedGoogle Scholar
  54. Yang J, Liu Z, Xiao TS (2017) Post-translational regulation of inflammasomes. Cell Mol Immunol 14:65–79.  https://doi.org/10.1038/cmi.2016.29 CrossRefPubMedGoogle Scholar
  55. Zhao Y, Shao F (2015) The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 265:85–102.  https://doi.org/10.1111/imr.12293 CrossRefPubMedGoogle Scholar
  56. Zhao Y et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600.  https://doi.org/10.1038/nature10510 CrossRefPubMedGoogle Scholar
  57. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225.  https://doi.org/10.1038/nature09663 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Lab. of Inflammatory Diseases, Department of Physiology, College of Veterinary Medicine and Institute of Veterinary ScienceKangwon National UniversityChuncheonRepublic of Korea
  2. 2.Sunjin Bridge Lab Co., Ltd.KyoungkiRepublic of Korea
  3. 3.Department of Molecular Bioscience, School of Biomedical ScienceKangwon National UniversityChuncheonRepublic of Korea

Personalised recommendations