Plant phylogenetic diversity of tropical mountaintop rocky grasslands: local and regional constraints

  • Jacqueline Salvi de MattosEmail author
  • Leonor Patrícia Cerdeira Morellato
  • Maria Gabriela Gutierrez Camargo
  • Marco Antonio Batalha


Mountains are interesting systems for studying patterns of diversity distribution and the role of environmental filters and competition on community assembly. According to the phylogenetic niche conservatism theory, the co-occurrence of closely related species might indicate that environmental filters are more important than competition when structuring communities in time and space. We investigated the patterns of phylogenetic diversity and the influence of environmental filters in the Brazilian rocky grasslands and tested the influence of phylogenetic niche conservatism. We placed 180 plots of 1 m2 in five sites along an altitudinal gradient at the Cipó Mountains (Espinhaço Range, southeastern Brazil) and surveyed all vascular plant species and edaphic variables. We assessed the phylogenetic diversity of the communities by calculating the phylogenetic species variability and phylogenetic species richness. These measures were related to altitude and the edaphic variables through a principal component analysis and regressions. Phylogenetic species variability decreased towards higher altitudes and less fertile sites, whereas phylogenetic species richness increased. Thus, the number of species and the degree of phylogenetic clustering increased with increasing altitude, suggesting that the intensity of abiotic factors acting as environmental filters increased with altitude and could be constraining species in the community to a smaller number of clades.


Cerrado Community assembly rules Elevational gradient Serra do Cipó Mountain grasslands Rupestrian grasslands 



Our research was supported by São Paulo Research Foundation (FAPESP) (FAPESP-Microsoft Research Institute Grants #2013/50155-0 and FAPESP Grant: #2009/54208-6,) and by the National Council for Scientific and Technological Development (CNPq) (Grants: CNPq-PVE #400717/2013-1 and the Long-Term Ecological Research PELD-CRSC-17). JSM received a Master’s degree scholarship from CAPES (Coordination of Superior Level Staff Improvement); MGGC received a CNPq-PDJ (Grant #161293/2015-8) and receives FAPESP (Grants #2015/10754-8, #2018/21646-0) scholarships. LPCM receives a productivity fellowship from CNPq (#310761/2014-0, #311820/2018-2). MAB received a productivity fellowship from CNPq (#305912/2013-5). We thank ICMBio for granting the permits needed to work at Serra do Cipó National Park (PNSC) and its buffer zone. We also thank the Reserva Vellozia, Pousada Pouso do Elefante, and Cedro Têxtil Company, for allowing access to private areas around the PNSC. We thank Soizig Le Stradic and Marcel Coelho for the floristic survey and other aids. We are grateful to all the taxonomists who helped us in plant identification: Ana Paula Fortuna, Ana Paula Prata, Augusto Francener, Caroline Oliveira Andrino, Cassiano Aimberê Dorneles Welker, Daniela Zappi, Fernando AO Silveira, Gabriel Marcusso, Guilherme Antar, Gustavo Shimizu, Ilsi Boldrini, James Lucas da Costa Lima, João Aguiar Nogueira Batista, João Semir, José Floriano Barêa Pastore, Marcelo Monge, Leonardo Maurici Borges, José Floriano Barêa Pastore, Maria Fernanda Calió, Nara Mota, Pablo Hendrigo Alves de Melo, Rosana Romero, and Suzana Costa. We also would like to thank the Department of Environmental Sciences at the Federal University of São Carlos for providing the license for ArcGis®10.5.

Supplementary material

11258_2019_982_MOESM1_ESM.docx (47 kb)
Supplementary file1 (DOCX 46 kb)


  1. Abrahão A, de Britto CP, Lambers H, Andrade SAL, Sawaya ACHF, Ryan MH, Oliveira RS (2018) Soil types select for plants with matching nutrient-acquisition and -use traits in hyperdiverse and severely nutrient-impoverished campos rupestres and cerrado in Central Brazil. J Ecol. CrossRefGoogle Scholar
  2. Alkmin FF (2012) Serra do Espinhaço e Chapada Diamantina. In: Y Hasui, CDR Carneiro, FFM Almeida, A Bartorelli(eds) Geologia do Brasil. Beca, São PauloGoogle Scholar
  3. Antonelli A, Verola CF, Parisod C, Gustafsson ALS (2010) Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol J Linn Soc 100:597–607. CrossRefGoogle Scholar
  4. Arruda MR, Moreira A, Pereira JCR (2014) Amostragem e cuidados na coleta de solo para fins de fertilidade. Embrapa Amazônia Ocidental, ManausGoogle Scholar
  5. Beaulieu JM, Ree RH, Cavender-Bares J, Weiblen GD, Donoghue MJ (2012) Synthesizing phylogenetic knowledge for ecological research. Ecology 93:4–13. CrossRefGoogle Scholar
  6. Borges LM, Pirani JR (2013) Flora da Serra do Cipó, Minas Gerais: Leguminosae-Mimosoideae. Bol Bot Univ São Paulo. CrossRefGoogle Scholar
  7. Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci 105:11505–11511. CrossRefPubMedGoogle Scholar
  8. Carvalho GH, Cianciaruso MV, Batalha MA (2010) Plantminer: a web tool for checking and gathering plant species taxonomic information. Environ Model Softw 25:815–816. CrossRefGoogle Scholar
  9. Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715. CrossRefPubMedGoogle Scholar
  10. Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531. CrossRefGoogle Scholar
  11. Colli-Silva M, Vasconcelos TNC, Pirani JR (2019) Outstanding plant endemism levels strongly support the recognition of provinces in mountaintops of eastern South America. J Biogeogr 46:1723-1733. CrossRefGoogle Scholar
  12. Echternacht L, Trovó M, Oliveira CT, Rubens J (2011) Areas of endemism in the Espinhaço Range in Minas Gerais, Brazil. Flora. CrossRefGoogle Scholar
  13. ESRI (Environmental Systems Research Institute). ArcGIS® for the desktop: ArcMap, version 10.5, 2017Google Scholar
  14. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. CrossRefGoogle Scholar
  15. Fernandes GW (ed) (2016) The megadiverse rupestrian grassland. In: Ecology and conservation of mountaintop grasslands in Brazil. Springer, Cham, pp 3–14Google Scholar
  16. Giulietti AM, Menezes NL, Pirani JR, Meguro M, Wanderley MGL (1987) Flora da Serra do Cipó, Minas Gerais: caracterização e lista das espécies. Bol Bot Univ São Paulo 9:1–151. CrossRefGoogle Scholar
  17. Helmus MR, Bland TJ, Williams CK, Ives AR (2007a) Phylogenetic measures of biodiversity. Am Nat 169:E68–E83. CrossRefPubMedGoogle Scholar
  18. Helmus MR, Savage K, Diebel MW, Maxted JT, Ives AR (2007b) Separating the determinants of phylogenetic community structure. Ecol Lett 10:917–925. CrossRefPubMedGoogle Scholar
  19. Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Plant Soil 322:49–86. CrossRefGoogle Scholar
  20. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427. CrossRefGoogle Scholar
  21. Köppen W (1931) Grundriss der Klimakunde. Walter de Gruyter, Berlin, 388ppGoogle Scholar
  22. Kromer T, Kessler M, Robbert Gradstein S, Acebey A (2005) Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. J Biogeogr 32:1799–1809. CrossRefGoogle Scholar
  23. Le Stradic S, Buisson E, Fernandes GW (2015) Vegetation composition and structure of some neotroopical mountain grasslands in Brazil. J Mt Sci 12:864–877. CrossRefGoogle Scholar
  24. Le Stradic S, Buisson E, Fernandes GW, Morellato LPC (2018) Reproductive phenology of two co-occurring Neotropical mountain grasslands. J Veg Sci 29:15–24. CrossRefGoogle Scholar
  25. Leibold MA, Economo EP, Peres-Neto P (2010) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol Lett 13:1290–1299. CrossRefPubMedGoogle Scholar
  26. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13. CrossRefGoogle Scholar
  27. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003. CrossRefPubMedGoogle Scholar
  28. Machac A, Janda M, Dunn RR, Sanders NJ (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34:364–371. CrossRefGoogle Scholar
  29. Magurran A (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  30. Mamede MCH (1987) Flora da serra do cipó, MG: Malpighiaceae. Bol Bot Univ São Paulo 9:157–198. CrossRefGoogle Scholar
  31. McCain CM, Grytnes JA (2010) Elevational gradients in species richness. Encycl Life Sci. CrossRefGoogle Scholar
  32. Miazaki AS, Gastauer M, Meira-neto JAA (2015) Environmental severity promotes phylogenetic clustering in campo rupestre vegetation. Acta Bot Bras 29:561–566. CrossRefGoogle Scholar
  33. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol Lett 10:315–331. CrossRefPubMedGoogle Scholar
  34. Mota SG, Luz GR, Mota NM, Silva Coutinho E, das Dores Magalhães Veloso M, Fernandes GW, Nunes YRF (2018) Changes in species composition, vegetation structure, and life forms along an altitudinal gradient of rupestrian grasslands in south-eastern Brazil. Flora. CrossRefGoogle Scholar
  35. Negreiros D, Le Stradic S, Fernandes GW, Rennó HC (2013) Estratégias ecológicas de plantas de campo rupestre. Plant Ecol 215(4):379–388. CrossRefGoogle Scholar
  36. Oliveira RS, Galvão HC, de Campos MCR, Eller CB, Pearse SJ, Lambers H (2015) Mineral nutrition of campos rupestres plant species on contrasting nutrient-impoverished soil types. New Phytol 205:1183–1194. CrossRefPubMedGoogle Scholar
  37. Parra JL, McGuire JA, Graham CH (2010) Incorporating clade identity in analyses of phylogenetic community structure: an example with hummingbirds. Am Nat 176:573–587. CrossRefPubMedGoogle Scholar
  38. Pirani JR, Mello-Silva R, Giulietti AM (2003) Flora de Grão Mogol, Minas Gerais, Brasil. Bol Bot Univ São Paulo 21:1–24. CrossRefGoogle Scholar
  39. Pscheidt AC (2015) O gênero Microstachys A.Juss. e a tribo Hippomaneae (Euphorbiaceae). PhD Thesis. Instituto de Botânica da Secretaria de Estado do Meio Ambiente.Google Scholar
  40. Pugliesi L, Rapini A (2015) Tropical refuges with exceptionally high phylogenetic diversity reveal contrasting phylogenetic structures. Int J Biodivers 2015:1–17. CrossRefGoogle Scholar
  41. Qian H, Jin Y (2016) An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol 9:233–239. CrossRefGoogle Scholar
  42. Qian H, Hao Z, Zhang J (2014) Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J Plant Ecol 7:154–165. CrossRefGoogle Scholar
  43. R Development Core Team (2018) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0.
  44. Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205. CrossRefGoogle Scholar
  45. Rando JG, Hervencio P, Souza VC, Giulietti A, Pirani JR (2013) Flora da Serra do Cipó, Minas Gerais: Leguminosae “Caesalpinioideae”. Bol Bot Univ São Paulo 31:141–198. CrossRefGoogle Scholar
  46. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15. CrossRefGoogle Scholar
  47. Rocha NMWB, Carstensen DW, Fernandes GW, Le Stradic S, Buisson E, Morellato LPC (2016) Phenology patterns across a Rupestrian Grassland altitudinal gradient. In: GW Fernandes (ed) Ecology and conservation of Mountaintop Grasslands in Brazil. Springer, Cham. CrossRefGoogle Scholar
  48. Samson DA, Rickart EA, Gonzales PC (2006) Ant diversity and abundance along an elevational gradient in the Philippines. Biotropica 29:349–363. CrossRefGoogle Scholar
  49. Schaefer CEGR, Corrêa GR, Candido HG, Arruda DM, Nunes JA, Araujo RW, Rodrigues PMS, Filho EIF, Pereira AJS, Brandão PC, Neri AV (2016) The physical environment of Rupestrian Grasslands (Campos Rupestres) in Brazil: geological, geomorphological and pedological characteristics, and interplays. In: GW Fernandes (ed) Ecology and conservation of Mountaintop Grasslands in Brazil. Springer, Cham. CrossRefGoogle Scholar
  50. Silva-Luz CL, Gomes CG, Pirani JR, Harley RM (2012) Flora da Serra do Cipó, Minas Gerais: Lamiaceae. Bol Bot Univ São Paulo 30:109. CrossRefGoogle Scholar
  51. Silveira FAO, Negreiros D, Barbosa NPU, Buisson E, Carmo FF, Carstensen DW, Conceição AA, Cornelissen TG, Echternacht L, Fernandes GW, Garcia QS, Guerra TJ, Jacobi CM, Lemos-Filho JP, Le Stradic S, Morellato LPC, Neves FS, Oliveira RS, Schaefer CE, Viana PL, Lambers H (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152. CrossRefGoogle Scholar
  52. Silveira FAO, Barbosa M, Beiroz W, Callisto M, Macedo DR, Morellato LPC, Neves FS, Nunes YRF, Solar RR, Fernandes GW (2019) Tropical mountains as natural laboratories to study global changes: A long-term ecological research project in a megadiverse biodiversity hotspot. Perspect Plant Ecol 38:64–73. CrossRefGoogle Scholar
  53. Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE (2009) Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc Natl Acad Sci 106:20359–20364. CrossRefPubMedGoogle Scholar
  54. Smith SA, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9:37.  CrossRefPubMedPubMedCentralGoogle Scholar
  55. Smith MA, Hallwachs W, Janzen DH (2014) Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography (Cop) 37:720–731. CrossRefGoogle Scholar
  56. Terborgh J (1977) Bird species diversity on an Andean elevational gradient. Ecology 58:1007–1019. CrossRefGoogle Scholar
  57. Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA et al (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715. CrossRefPubMedGoogle Scholar
  58. Wanderley MDGL (2011) Flora da serra do cipó, Minas Gerais: Xyridaceae. Bol Bot Univ São Paulo 29:69–134. CrossRefGoogle Scholar
  59. Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155. CrossRefPubMedGoogle Scholar
  60. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505. CrossRefGoogle Scholar
  61. Zappi DC, Moro MF, Meagher TR, Nic Lughadha E (2017) Plant biodiversity drivers in brazilian campos rupestres: insights from phylogenetic structure. Front Plant Sci 8:1–15. CrossRefGoogle Scholar
  62. Zhang W, Huang D, Wang R, Liu J, Du N (2016) Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of northern China. PLoS ONE 11:1–13. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BotanyFederal University of São CarlosSão CarlosBrazil
  2. 2.Laboratory of Phenology, Department of BotanySão Paulo State University (UNESP)Rio ClaroBrazil

Personalised recommendations