Advertisement

Intra-inflorescence variation in reproductive traits of Conopholis alpina (Orobanchaceae): effect of flower maturation pattern and resource competition

  • Itzel L. Castillo-Sánchez
  • Dulce M. Figueroa-CastroEmail author
Article
  • 7 Downloads

Abstract

The ecological and evolutionary implications of intra-individual variation in plant traits have been acknowledged. Several studies have described the existence of intra-inflorescence variation in reproductive traits. Moreover, some of those studies have attempted to provide a plausible explanation to the gradient of intra-inflorescence variation observed. However, most of them fail to separate the effects of inflorescence architecture from those of resource allocation. The goal of this study was to determine the existence of intra-inflorescence variation in reproductive traits (attractive, reproductive organs, and reproductive success) of Conopholis alpina (Orobanchaceae), a holoparasite plant common in oak forests. Corolla length, number, viability, and diameter of pollen grains per flower, number of ovules per flower, pollen:ovule ratio, fruit size (length, width, and area), number of seeds per fruit, and seed set were measured in reproductive structures produced in three different regions within the inflorescence (i.e., bottom, middle, top). We found a significant effect of the region in which reproductive structures were produced on all traits, except pollen:ovule ratio. In all those traits in which significant differences among regions were found, reproductive traits had the highest values in the middle region of the inflorescence, which is also the first to reach maturity. Moreover, a trade-off between number of seeds and seed weight was detected on the bottom region of the inflorescence. Our results provide strong support towards the existence of differential resource availability among regions within the inflorescence as an explanation to the pattern of intra-inflorescence variation detected.

Keywords

Holoparasite plant Intra-individual variation Reproductive assurance Reproductive success Resource allocation 

Notes

Acknowledgements

The authors thank the community of Santa Catarina Lachatao in Oaxaca for allowing us to conduct this study in their locality. Juan Hernández and Verónica Hernández were very supportive during logistics and field work. Arturo Casasola-González, Mario Pérez, Sandra Aguilar-García, Luis Padilla, Samantha de los Santos, Laura de Sampedro, Silvia Cruz, Paula Marcos, Alexa Hernández, Diego Hernández, Leslie Marcos, Eva Marcos, Sofía Hernández, Roberto Hernández, Ramiro Santiago, and Armando Santiago were very helpful during field work. Sandra Aguilar-García helped to standardize the protocol for the acetolysis procedure. Arelee Muñoz, Karla López, Xiumy Sánchez, and Alicia Elvira assisted at processing samples in the laboratory. Members of the Hystophysiology laboratory at Facultad de Ciencias Biológicas from Benemérita Universidad Autónoma de Puebla (BUAP) allowed the use of their facilities to conduct the acetolysis procedure. Recommendations from Professor Marcos Méndez and an anonymous reviewer significantly improved the manuscript. This study was supported by Vicerrectoría de Investigación y Estudios de Posgrado (VIEP) from Benemérita Universidad Autónoma de Puebla (Grant Number: FICD-NAT17-I) to D.M. F.-C.

References

  1. Alonso C, Pérez R, Bazaga P, Medrano M, Herrera CM (2018) Within-plant variation in seed size and inflorescence fecundity is associated with epigenetic mosaicism in the shrub Lavandula latifolia (Lamiaceae). Ann Bot 121:153–160CrossRefGoogle Scholar
  2. Alvarado-Cárdenas L (2008) Flora del valle de Tehuacán-Cuicatlán. Fascículo 65: Orobanchaceae. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
  3. Arceo-Gómez G, Vargas CF, Parra-Tabla V (2017) Selection on intra-individual variation in stigma—anther distance in the tropical tree Ipomoea wolcottiana (Convolvulaceae). Plant Biol 19:454–459CrossRefGoogle Scholar
  4. Ashman TL, Hitchens MS (2000) Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). Am J Bot 87:197–204CrossRefGoogle Scholar
  5. Ashman TL, Pacyna J, Diefenderfer C, Leftwich T (2001) Size-dependent sex allocation in a gynodioecious wild strawberry: the effects of sex morph and inflorescence architecture. Int J Plant Sci 162:327–334CrossRefGoogle Scholar
  6. Bawa KS, Beach JH (1981) Evolution of sexual systems in flowering plants. Ann MO Bot Gard 68:254–274CrossRefGoogle Scholar
  7. Bawa KS, Webb CJ (1984) Flower, fruit and seed abortion in tropical forest trees: implications for the evolution of paternal and maternal reproductive patterns. Am J Bot 71:736–751CrossRefGoogle Scholar
  8. Brunet J (1992) Sex allocation in hermaphroditic plants. Trends Ecol Evol 7:79–84CrossRefGoogle Scholar
  9. Cao GX, Xie T, Wu BX, Yang CP (2015) Floral sex allocation and reproductive success within inflorescences of Hosta ventricosa, a pseudogamous apomict. J Plant Ecol 8:142–153CrossRefGoogle Scholar
  10. Castillo-Sánchez IL (2017) Biología reproductiva de Conopholis alpina (Orobanchaceae) en Santa Catarina Lachatao, Oaxaca. Bachelor’s thesis, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.Google Scholar
  11. Centro de Estudios para el Manejo Sustentable de los Recursos Naturales, SC (CEMASREN) (1999) Resultados de manejo forestal para el aprovechamiento de recursos forestales maderables en la comunidad de Pueblos Mancomunados de Lachatao, Amatlán, Yavesía y anexos de los mismos municipios, Distrito de Ixtlán, Estado de Oaxaca, resultados del proceso de datos. Vol. II. Oaxaca, Oaxaca, Mexico.Google Scholar
  12. Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46CrossRefGoogle Scholar
  13. Dai C, Liang X, Ren J, Liao M, Li J, Galloway LF (2016) The mean and variability of a floral trait have opposing effects on fitness traits. Ann Bot 117:421–429CrossRefGoogle Scholar
  14. Diggle PK (1997) Ontogenetic contingency and floral morphology: the effects of architecture and resource limitation. Int J Plant Sci 158:S99–S107CrossRefGoogle Scholar
  15. Diggle PK (2003) Architectural effects on floral form and function: a review. Regnum Veg 3:63–80Google Scholar
  16. Granado-Yela C, Balaguer L, Cayuela L, Méndez M (2017) Unusual positional effects in flower sex in an andromonoecious tree: resource competition, architectural constraints, or inhibition by the apical flower? Am J Bot 104:608–615CrossRefGoogle Scholar
  17. Guitián J, Navarro L (1996) Allocation of reproductive resources within inflorescences of Petrocoptis grandiflora (Caryophyllaceae). Can J Bot 74:1482–1486CrossRefGoogle Scholar
  18. Guitián J, Medrano M, Oti JE (2004) Variation in floral sex allocation in Polygonatum odoratum (Liliaceae). Ann Bot 94:433–440CrossRefGoogle Scholar
  19. Herrera CM (2009) Multiplicity in unity: plant subindividual variation and interactions with animals. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  20. Herrera CM (2017) The ecology of subindividual variability in plants: patterns, processes, and prospects. Web Ecol 17:51–64CrossRefGoogle Scholar
  21. Herrera CM, Medrano M, Bazaga P (2014) Variation in DNA methylation transmissibility, genetic heterogeneity and fecundity-related traits in natural populations of the perennial herb Helleborus foetidus. Mol Ecol 23:1085–1095CrossRefGoogle Scholar
  22. Hiraga T, Sakai S (2007) The effects of inflorescence size and flower position on biomass and temporal sex allocation in Lobelia sessiliflora. Plant Ecol 188:205–214CrossRefGoogle Scholar
  23. Instituto Nacional de Estadística, Geografía e Informática (INEGI) (2005) Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos: Santa Catarina Lachatao, Oaxaca. https://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/20/20365.pdf Accessed 31 Jan 2019
  24. Ishii HS, Sakai S (2002) Temporal variation in floral display size and individual floral sex allocation in racemes of Narthecium asiaticum (Liliaceae). Am J Bot 89:441–446CrossRefGoogle Scholar
  25. Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, NiwotGoogle Scholar
  26. Kliber A, Eckert CG (2004) Sequential decline in allocation among flowers within inflorescences: proximate mechanisms and adaptive significance. Ecology 85:1675–1687CrossRefGoogle Scholar
  27. Kudo G, Maeda T, Narita K (2001) Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): pollination efficiency or resource limitation? J Ecol 89:48–56CrossRefGoogle Scholar
  28. Kulbaba MW, Clocher IC, Harder LD (2017) Inflorescence characteristics as function-valued traits: analysis of heritability and selection on architectural effects. J Syst Evol 55:559–565CrossRefGoogle Scholar
  29. Lloyd DG (1980) Sexual strategies in plants I. A hypothesis of serial adjustment of maternally investment during one reproductive session. New Phytol 86:69–79CrossRefGoogle Scholar
  30. Lloyd DG, Webb CJ, Primack RB (1980) Sexual strategies in plants. II. Data on the temporal regulation of maternal investment. New Phytol 86:81–92CrossRefGoogle Scholar
  31. Medrano M, Guitián P, Guitián J (2000) Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects? Am J Bot 87:493–501CrossRefGoogle Scholar
  32. Mossop R, Macnair MR, Robertson W (1994) Within-population variation in sexual resource allocation in Mimulus guttatus. Funct Ecol 8:410–418CrossRefGoogle Scholar
  33. Ordano M, Tejada KA, Benavídez A (2011) Caracterización de la variación intra-individual en tamaño y forma del fruto en Psychotria carthagenensis Jacq. (Rubiaceae). Lilloa 48:189–204Google Scholar
  34. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  35. Rzedowski G (1998) Flora del bajío y de regiones adyacentes. Fascículo 69: Orobanchaceae. Instituto de Ecología, A.C. Centro Regional del Bajío, Pátzcuaro, Michoacán, Mexico.Google Scholar
  36. Seifi E, Guerin J, Kaiser B, Sedgley M (2008) Inflorescence architecture of olive. Sci Hort 116:273–279CrossRefGoogle Scholar
  37. Simons AM, Johnston MO (2000) Variation in seed traits of Lobelia inflata (Campanulaceae): sources and fitness consequences. Am J Bot 87:124–132CrossRefGoogle Scholar
  38. Soejarto D, Fonnegra R (1972) Polen: diversidad en formas y tamaños. Actu Biol 1:1–13Google Scholar
  39. Thomson JD (1989) Deployment of ovules and pollen among flowers within inflorescences. Evol Trend Plant 3:65–66Google Scholar
  40. Torices R, Méndez M (2014) Resource allocation to inflorescence components is highly integrated despite differences between allocation currencies and sites. Int J Plant Sci 175:713–723CrossRefGoogle Scholar
  41. Unidad de Manejo Forestal (UMAFOR) (2007) Estudio regional forestal para el fortalecimiento de las Unidades de Manejo Forestal en la Sierra Norte Oaxaca. Fondo CONAFOR-CONACYT, Comisión Nacional Forestal (CONAFOR)Google Scholar
  42. Wesselingh RA, Arnold M (2003) A top-down hierarchy in fruit set on inflorescences in Iris fulva (Iridaceae). Plant Biol 5:651–660CrossRefGoogle Scholar
  43. Zhang G, Xie T, Du G (2012) Variation in floral sex allocation, female success, and seed predation within racimiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae). J Plant Res 125:527–538CrossRefGoogle Scholar
  44. Zhao Z-G, Liu Z-J, Conner JK (2015) Plasticity of floral sex allocation within inflorescences of hermaphrodite Aconitum gymnandurm. J Plant Ecol 8:130–135CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratorio de Interacciones Ecológicas, Facultad de Ciencias BiológicasBenemérita Universidad Autónoma de PueblaPueblaMexico

Personalised recommendations