Advertisement

Plant Ecology

, Volume 220, Issue 4–5, pp 481–498 | Cite as

Riparian and adjacent forests differ both in the humid mountainous ecoregion and the semiarid lowland

  • Edgardo J. I. PeroEmail author
  • Pablo A. Quiroga
Article

Abstract

Few studies have quantified changes in riparian and adjacent forest across landscape units. In this study, the composition and structure of riparian and adjacent forest were compared in a humid and a semiarid ecoregion in northwestern Argentina: the Yungas forest and the Western Chaco. We expected that differences between riparian and adjacent zones could be less marked in humid than in semiarid regions. Ten sites were surveyed with a block design. An Importance Value Index, Rank-Abundance curves, and Analysis of Similarity and multivariate analyzes (NMDS) were performed to evaluate differences between forests. Stream and floodplain widths, lateral, and longitudinal slopes of streamside were analyzed by a principal components analysis (PCA). NMDS and PCA axes were correlated to analyze the relations among physical and biological arrangements. Results revealed that riparian forest may be very different from the adjacent in both ecoregions. Marked differences in geomorphological and physical features of streamsides were found between ecoregions and they were strongly associated with assemblage distribution. In Yungas forest, dominant species were different at all sites, according to the altitudinal stratification of this region. Within Western Chaco the species Salix humboldtiana Willd. and Tessaria integrifolia Ruiz and Pav., were commonly dominant in riparian sectors. The dominance of these species in both sectors by the widest rivers could indicate that the dimensions of the riparian zone in those sites are greater than those by the smaller streams. Our study reinforced the concept of riparian zones as dynamic ecosystems and we propose considering a landscape perspective in managerial decision making.

Keywords

Riparian vegetation Riparian landscape Yungas forest Western Chaco Subtropical Argentina 

Notes

Acknowledgements

We are grateful to Sofia Malcum, Mario Feylling, Nicolas Laguna, Sebastian Albanesi, Guillermo Hankel, Dante Loto, and Carlos Navarro for their assistance in sampling trips; to Luciana Cristobal for helping to edit the image of the study area; to Sergio Georgieff, Ignacio Gasparri, Carlos Cultid, Daniel Dos Santos, and Juan Pablo Juliá for their valuable comments; to Hugo Fernández and Eduardo Domínguez for a review of the manuscript; as well as to the three anonymous reviewers for their comments and suggestions which improved the manuscript. This study was supported by fellowships of ANPCyT (National Agency of Scientific and Technological Promotion) and CONICET (National Council of Scientific Research, Argentina) and the following grants: ANPCyT PICT 1067–2012, PIP-CONICET 0330, P-UE CONICET 0099, and Universidad Nacional de Tucumán POA2-2016/05.

Supplementary material

11258_2019_929_MOESM1_ESM.docx (37 kb)
Supplementary file1 (DOCX 36 kb)

References

  1. Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:761–776CrossRefGoogle Scholar
  2. Amoros C, Roux AL, Reygrobeller JL, Bravard JP, Pautou C (1987) A method for applied ecological studies of fluvial hydrosystems. Regulat Rivers 1:17–38CrossRefGoogle Scholar
  3. Andresen E (2005) Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica 37:291–300CrossRefGoogle Scholar
  4. Bray JR, Curtis JT (1957) An ordination of upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349CrossRefGoogle Scholar
  5. Brinson MM (1990) Riverine forests. In: Lugo AE, Brinson MM, Brown SL (eds) Forested wetlands. Ecosystems of the world, Elsevier, Amsterdam, pp 87–141Google Scholar
  6. Brown AD (2000) Development threats to biodiversity and opportunities for conservation in the mountain ranges of the upper Bermejo river basin, NW Argentina and SW Bolivia. Ambio 29:445–449CrossRefGoogle Scholar
  7. Brown AD, Pacheco S (2006) Propuesta de actualización del mapa ecorregional de la Argentina. In: Brown A, Martínez Ortiz U, Acerbi M, Corcuera J (eds) La situación ambiental argentina 2005. Fundación Vida Silvestre, Buenos Aires, pp 28–31Google Scholar
  8. Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kapelle M, Brown AD (eds) Bosques Nublados del Neotrópico. INBio, Heredia, Costa Rica, pp 623–659Google Scholar
  9. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería, 2nd edn. Editorial Acme S.A.C.I., Buenos AiresGoogle Scholar
  10. Capon SJ, Chambers LE, Mac Nally R, Naiman RJ, Davies P, Marshall N, Pittock J, Reid M, Capon T, Douglas M, Catford J, Baldwin DS, Stewardson M, Roberts J, Parsons M, Williams SE (2013) Riparian ecosystems in the 21th century: hotspot for climate change adaptation? Ecosystems 16:359–381CrossRefGoogle Scholar
  11. Casco SL, Neiff JJ, Poi de Neiff A (2010) Ecological responses of two pionner species to a hydrological connectivity gradient in riparian forest of the lower Paraná River. Plant Ecol 209:167–177.  https://doi.org/10.1007/s11258-010-9734-9 CrossRefGoogle Scholar
  12. Cattaneo A, Salmoiraghi G, Gazzera S (1995) The rivers of Italy. In: Cushing CE, Cummins KW, Minshal GW (eds) River and stream ecosystems. Elsevier, Amsterdam, pp 479–505Google Scholar
  13. Corenblit D, Tabacchi E, Steiger J, Gurnell AM (2007) Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: a review of complementary approaches. Earth Sci Rev 84:56–86CrossRefGoogle Scholar
  14. Corenblit D, Davies NS, Steiger J, Gibling MR, Bornette G (2015) Considering river structure and stability in the light of evolution: feedbacks between riparian vegetation and hydrogeomorphology. Earth Surf Proc Land 40:189–207CrossRefGoogle Scholar
  15. Cultid-Medina CA, Escobar F (2016) Assessing the ecological response of Dung Beetles in an agricultural landscape using number of individuals and biomass in diversity measures. Environ Entomol 45:310–319CrossRefGoogle Scholar
  16. Cumming G, Fidler F, Vaux DL (2007) Error bars in experimental biology. J Cell Biol 21:7–11CrossRefGoogle Scholar
  17. Décamps H (1996) The renewal of floodplain forests along rivers: a landscape perspective. Verh Int Ver Theor Angew Limnol 26:35–59Google Scholar
  18. Décamps H, Fortune M, Gazelle F, Patou G (1988) Historical influence of man on the riparian dynamics of a fluvial landscape. Landsc Ecol 1:163–173CrossRefGoogle Scholar
  19. Domínguez E, Fernández HR (1998) Calidad de los ríos de la cuenca del Salí (Tucumán, Argentina) medida por un índice biótico. Conservación de la Naturaleza, 12. Fundación Miguel Lillo, TucumánGoogle Scholar
  20. Dray S, Dufour AB, Thioulouse J (2017) Package ade.4. Analysis of ecological data: Exploratory and Euclidean methods in environmental sciences. R-Project 20:31:18 UTC. https://pbil.univ-lyon1.fr/ADE-4
  21. Ellis LM, Crawford CS, Molles MC Jr (2002) The role of flood pulse in ecosystem-level processes in southwestern riparian forest: a case study from the Middle Rio Grande. In: Middleton BA (ed) Flood pulsing in wetlands: restoring the natural hydrologic balance. Wiley, New York, pp 51–107Google Scholar
  22. Feinsinger P (2001) Designing field studies for biodiversity conservation. In: Moreno CE (ed) The nature conservancy. Island Press, Washington, DCGoogle Scholar
  23. Fernández HR, Domínguez E, Romero F, Cuezzo MG (2006) La calidad del agua y la bioindicación en los ríos de montaña del Noroeste Argentino. Serie Conservación de la Naturaleza, vol 16. Fundación Miguel Lillo, Tucumán.Google Scholar
  24. Fernández RD, Ceballos SJ, González Achem AL, Fernández HR, Hidalgo MV (2016) Quality and conservation of riparian forest in a Mountain Subtropical Basin of Argentina. Int J Ecol 1:1–12.  https://doi.org/10.1155/2016/4842165 CrossRefGoogle Scholar
  25. Garcia AK, Fernández HR, Rolandi ML, Gultemirian L, Sanchez N, Pla L, Hidalgo MV (2017) Effect of diffuse pollution on water quality in mountain forest streams. For Res Eng Int J 1(1):00001.  https://doi.org/10.1155/2016/4842165 Google Scholar
  26. Gasparri NI (2016) The transformation of Land-Use Competition in the Argentinean Dry Chaco Between 1975 and 2015. In: Niewöhner J, Bruns A, Hostert P, Krueger T, Nielsen JØ, Haberl H, Lauk C, Lutz J, Müller D (eds) Land use competition: ecological, economics and social perspectives. Springer, Berlin, pp 59–73CrossRefGoogle Scholar
  27. Gregory SV, Swanson FV, McKee WA, Cummins KW (1991) An ecosystem perspective of riparian zones. Bioscience 41:540–551CrossRefGoogle Scholar
  28. Gurnell AM, Corenblit D, García de Jalón D, Gonzaléz del Tánago M, Grabowski RC, O’Haref MT, Szewczyk M (2016) Conceptual model of vegetation-hydrogeomorphology interactions within rivers corridors. River Res Appl 32:142–163CrossRefGoogle Scholar
  29. Hueck K (1978) Los bosques de Sudamérica. Ecología, Composición e Importancia Económica. Sociedad Alemana de Cooperación Técnica (GTZ), BerlínGoogle Scholar
  30. Hunt L, Marrochi N, Bonetto C, Liess M, Buss DF, Vieira da Silva C, Chiu MC, Resh VH (2017) Do riparian buffer protect stream invertebrate communities in South American Atlantic forest agricultural areas? Environ Manag. https://doi.org/10.1007/s00267-017-0938-9 Google Scholar
  31. Hupp CR, Rinaldi M (2007) Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers from Tuscany (Central Italy). Ann Assoc Am Geogr 97(1):12–30CrossRefGoogle Scholar
  32. Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the international large river symposium. Canadian Special Publication of Fisheries and Aquatic Science, vol 106. Department of Fisheries and Oceans, Ottawa, pp 110–127Google Scholar
  33. Kim D, Kupfer JA (2016) Tri-variate relationships among vegetation, soil, and topography along gradients fluvial biogeomorphic succession. PLoS ONE 11(9):e0163223CrossRefGoogle Scholar
  34. Kujanová K, Matausková M, Hosek Z (2018) The relationship between river types and land cover in riparian zones. Limonologica 71:29–43CrossRefGoogle Scholar
  35. Lamprecht H (1990) Silvicultura en los trópicos. GTZ, EschbornGoogle Scholar
  36. Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling, 2nd ed. Elsevier, AmsterdamGoogle Scholar
  37. MacGregor-Fors I, Payton ME (2013) Contrasting diversity values: Statistical inferences based on overlapping confidence intervals. PLoS ONE 8(2):e56794CrossRefGoogle Scholar
  38. Malanson GP (1993) Riparian Landscapes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6:301–312CrossRefGoogle Scholar
  40. Mertes LAK, Daniel DL, Melack JM, Nelson B, Martinelli LA, Forsberg BR (1995) Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon River in Brazil from a remote sensing perspective. Geomorphology 13:215–232CrossRefGoogle Scholar
  41. Mesa LM (2014) Influence of riparian quality on macroinvertebrate assemblages in subtropical mountain streams. J Nat Hist 1:1–12.  https://doi.org/10.1080/00222933.2013.861937 Google Scholar
  42. Minneti JL (1999) Atlas climático del Noroeste Argentino. Laboratorio Climatológico sudamericano, Fundación Zon Caldenius, TucumánGoogle Scholar
  43. Molineri C, Romero F, Fernández HR (2009) Diversidad y Conservación de Invertebrados Acuáticos. In: Brown AD, Blendinger PG, Lomáscolo T, García Bes P (eds) Selva Pedemontana de las Yungas: Historia natural, Ecología y Manejo de un Ecosistema en Peligro. Ediciones del Subtrópico, Yerba BuenaGoogle Scholar
  44. Naiman RJ, Décamps H (1990) The ecology and management of aquatic-terrestrial ecotones. UNESCO, ParisGoogle Scholar
  45. Naiman RJ, Décamps H (1997) The ecology of interfaces: Riparian zones. Ann Rev Ecol Syst 28:621–658CrossRefGoogle Scholar
  46. Naiman RJ et al (1992) Fundamental elements of ecologically healthy watershade in the Pacific Northwest coastal ecoregion. In: Naiman RJ (ed) Watershade management: balancing sustainability and environmental change. Springer, New York, pp 127–188CrossRefGoogle Scholar
  47. Naiman RJ, Décamps H, Pollock M (1993) The role of riparian corridors in maintaining regional biodiversity. Ecol Appl 3:209–212CrossRefGoogle Scholar
  48. Naiman RJ, Décamps H, McClain ME (2005) Riparia. Ecology, conservation and management of streamside communities. Elsevier Academic Press, London.Google Scholar
  49. Neiff JJ (1986) Las grandes unidades de vegetación y ambientes insular del río Paraná en el tramo Candelaria-Itá Ibaté. Rev Cienc Nat Lit 17:7–30Google Scholar
  50. Oliveira PS, Marquis RJ (2002) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New YorkCrossRefGoogle Scholar
  51. Paolino RM, Royle JA, Versiani NF, Rodrigues TF, Pasqualotto N, Krepschi VG, Chiarelo AG (2018) Importance of riparian forest corridors for the ocelot in agricultural landscapes. J Mammal 99(4):874–884CrossRefGoogle Scholar
  52. Pereira BAS, Silva MA, Mendonça RC (1993) Reserva ecológica do IBGE (Brasília, DF): lista das plantas vasculares. IBGE, Rio de JaneiroGoogle Scholar
  53. Pero EJI (2017) New records of Tamarix ramosissima Ledeb. (Tamaricaceae) in basins of Western Chaco dry forest, northwestern Argentina. Check List 13:925–930CrossRefGoogle Scholar
  54. Pero EJI, Hankel G, Molineri C, Domínguez E (2019) Correspondance between stream benthic macroinvertebrates and ecoregions in northwestern Argentina. Freshw Sci 38(1):64–76.  https://doi.org/10.1086/701467 CrossRefGoogle Scholar
  55. Pinay G, Décamps H, Chauvet E, Fustec E (1990) Functions of ecotones in fluvial systems. In: Naiman RJ, Décamps H (eds) The ecology and management of aquatic-terrestrial ecotones. Parthenon Publishing Group, Carnforth, pp 141–169Google Scholar
  56. Pinay G, Bernal S, Abbott BW, Lupon A, Marti E, Sabater F, Krause S (2018) Riparian corridors: a new conceptual framework for assessing Nitrogen buffering across biomes. Frontiers in Environmental Science 6:47CrossRefGoogle Scholar
  57. Pokrovsky OS (2016) Riparian zones: characteristics, management practices and ecological impacts. Nova Science Publishers, New YorkGoogle Scholar
  58. Prach K, Straskrabová J (1996) Restoration of degraded meadows: an experimental approach. In: Prach K, Jeník J, Large ARG (eds) Floodplain ecology and management. Central Europe SPB, Academic Publishing, Amsterdam, The Lunice River in the Trebon Biosphere Reserve, pp 87–93Google Scholar
  59. Quantum GIS Development Team (2014) Quantum GIS geographic information system. Open Source Geospatial Foundation Project, ChicagoGoogle Scholar
  60. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  61. Ramos PCM (1995) Vegetation communities and soils in the National Park of Brasília. Dissertation, University of EdinburghGoogle Scholar
  62. Rasmussen JJ, Baattrup-Pedersen A, Wiberg-Larsen P, McKnight US, Kronvang B (2011) Buffer strip width and agricultural pesticide contamination in Danish lowland streams: implications for stream and riparian management. Ecol Eng 37:1990–1997.  https://doi.org/10.1016/j.ecoleng.2011.08.016 CrossRefGoogle Scholar
  63. Reboratti HJ, Neiff JJ (1987) Distribución de los alisales de Tessaria integrifolia (Compositae) en los grandes ríos de la Cuenca del Plata. Boletín de la Sociedad Argentina de Botánica 25:25–42Google Scholar
  64. Rot BWL, Naiman RJ, Bilby RE (2000) Stream channel configuration, landform, and riparian forest structure in the Cascade Mountains, Washington. Can J Fish Aquat Sci 57:699–707CrossRefGoogle Scholar
  65. Salo EO, Cundy TW (1987) Streamside management: forestry and fishery interactions. Contribution 57. Institute of Forest Resources, University of Washington, SeattleGoogle Scholar
  66. Salo J, Kalliola R, Häkkinen I, Mäkinen Y, Niemelä P, Puhakka M, Coley PD (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322:254–258CrossRefGoogle Scholar
  67. Scheiner SM, Gurevitch J (1993) Design and analysis of ecological experiments. Chapman and Hall, New YorkGoogle Scholar
  68. Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dr. W. Junk Publishers, DordrechtCrossRefGoogle Scholar
  69. Sirombra MG, Mesa LM (2010) Composición florística y distribución de los bosques ribereños subtropicales andinos del Río Lules, Tucumán, Argentina. Rev Biol Trop 58:499–510Google Scholar
  70. Sirombra MG, Mesa LM (2012) A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBRy index. Ecol Indic 20:324–331CrossRefGoogle Scholar
  71. Steiger J, Tabacchi E, Dufour S, Corenblit D, Peiry J-L (2005) Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res Appl 21:719–737CrossRefGoogle Scholar
  72. Tang SM, Montgomery DR (1995) Riparian buffers and potentially unstable ground. Environ Manag 19:741–749CrossRefGoogle Scholar
  73. Vallet HM, Baker MA, Morrice JA, Crawford CS, Molles MC Jr, Dahm CN, Moyer DL, Thibault JR, Ellis ML (2005) Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecol 86(1):220–234CrossRefGoogle Scholar
  74. van Coller AL, Rogers KH, Heritage GL (1997) Linking riparian vegetation types and fluvial geomorphology along Sabie River within Kruger National Park, South Africa. Afr J Ecol 35:194–212CrossRefGoogle Scholar
  75. Vidaurre M, Pacheco LF, Roldán AI (2006) Composition and abundance of birds of Andean alder (Alnus acuminata) patches with past and present harvest in Bolivia. Biol Conserv 132:12–21CrossRefGoogle Scholar
  76. Ward JV, Tockner K, Arscott DB, Claret C (2002) Riverine landscape diversity. Freshw Biol 46:807–819CrossRefGoogle Scholar
  77. Welcomme RL (1985) River fisheries. Food and Agriculture Organization fisheries technical paper 262. United Nations Publications, RomeGoogle Scholar
  78. Zuloaga FO, Morrone O (1996) Catálogo de las plantas vasculares de la República Argentina. I. Pteridophyta, Gymnospermae and Angiospermae (Monocotyledoneae). Monogr Syst Bot Missouri Bot Garden 60:1–323Google Scholar
  79. Zuloaga FO, Morrone O (1999) Catálogo de las plantas vasculares de la República Argentina. II. Angiospermae (Dicotyledoneae). Monogr Syst Missouri Bot Garden 64:1–1269Google Scholar
  80. Zuloaga FO, Nicora EG, Rúgolo de Agrasar ZE, Morrone O, Pensiero JF, Cialdella AM (1994) Catálogo de la familia Poaceae en la República Argentina. Monogr Syst Bot Missouri Bot Garden 47:1–178Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Instituto de Biodiversidad Neotropical (IBN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de TucumánYerba BuenaArgentina
  2. 2.Jardín Botánico Horco Molle (JBHM), Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de TucumánYerba BuenaArgentina

Personalised recommendations