Advertisement

Urinary micro-RNA expressions and protein concentrations may differentiate bladder cancer patients from healthy controls

  • Gökçe Güllü Amuran
  • Ilker Tinay
  • Deniz Filinte
  • Can Ilgin
  • Irem Peker Eyüboğlu
  • Mustafa AkkiprikEmail author
Urology - Original Paper
  • 39 Downloads

Abstract

Purpose

To determine expression differences of urine exosomal miR-19b1-5p, 21-5p, 136-3p, 139-5p, 210-3p and concentration differences of urinary BLCA-4, NMP22, APE1/Ref1, CRK, VIM between bladder cancer, follow-up patients, and control samples, to evaluate diagnostic importance of these differences and establish a diagnostic panel for bladder cancer.

Methods

Urine samples of 59 bladder cancer patients, 34 healthy controls, and 12 follow-up patients without recurrence were enrolled to this study. Real-time PCR and ELISA were performed to determine urine exosomal miR-19b1-5p, 21-5p, 136-3p, 139-5p, 210-3p expressions and urinary BLCA-4, NMP22, APE1/Ref1, CRK, VIM, creatinine concentrations. Logistic regression analyses were performed to determine the diagnostic panel, the sensitivity, and specificity of the panel assessed by the ROC curve analysis. p values < 0.05 were considered statistically significant.

Results

In bladder cancer risk groups, mir-139, -136, -19 and 210 expressions or positivity were found to be different and concentrations of urinary Ape1/Ref1, BLCA4, CRK, and VIM increased by twofold on average compared to healthy controls. Logistic regression and ROC analyses revealed that panel could differentiate bladder cancer patients from healthy controls with 80% sensitivity and 88% specificity (AUC = 0.899), low-risk patients from controls with 93% sensitivity and 95.5% specificity (AUC = 0.976). Despite the low number of samples, our findings suggest that urine exosomal miR-19b1-5p, 136-3p, 139-5p expression, and urinary APE1/Ref1, BLCA-4, CRK concentrations are promising candidates in terms of bladder cancer diagnosis.

Conclusions

Although our panel has great sensitivity for early detection of BC, it needs to be validated in larger populations.

Keywords

Bladder cancer Urinary protein Urine exosomal miRNA Urinary biomarker Bladder cancer diagnosis 

Abbreviations

BC

Bladder cancer

NMICB

Non-muscle-invasive bladder cancer

MIBC

Muscle-invasive bladder cancer

LR

Low risk

HR

High risk

IR

Intermediate risk

LIR

Low-intermediate risk

FDA

Food and drug administration

Notes

Acknowledgements

This study was funded by Marmara University Research Commission BAPKO-SAG-C-DRP-1310160441.

Compliance with ethical standards

Conflict of interest

The research was funded by Marmara University Research Commission BAPKO-SAG-C-DRP-1310160441.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional committee, reference number 09.2016.416 and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11255_2019_2328_MOESM1_ESM.pdf (854 kb)
Supplementary material 1 (PDF 854 kb)

References

  1. 1.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424.  https://doi.org/10.3322/caac.21492 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    NICE (2017) Bladder cancer: diagnosis and management of bladder cancer. BJU Int 120(6):755–765.  https://doi.org/10.1111/bju.14045 CrossRefGoogle Scholar
  3. 3.
    Tan WS, Tan WP, Tan MY et al (2018) Novel urinary biomarkers for the detection of bladder cancer: a systematic review. Cancer Treat Rev 69:39–52.  https://doi.org/10.1016/j.ctrv.2018.05.012 CrossRefPubMedGoogle Scholar
  4. 4.
    Chakraborty A, Dasari S, Long W, Mohan C (2019) Urine protein biomarkers for the detection, surveillance, and treatment response prediction of bladder cancer. Am J Cancer Res 9(6):1104PubMedPubMedCentralGoogle Scholar
  5. 5.
    Liu X, Liu X, Wu Y et al (2017) MicroRNAs in biofluids are novel tools for bladder cancer screening. Oncotarget 8(19):32370–32379.  https://doi.org/10.18632/oncotarget.16026 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weber JA, Baxter DH, Zhang S et al (2010) The MicroRNA spectrum in 12 body fluids. Clin Chem 56(11):1733–1741.  https://doi.org/10.1373/clinchem.2010.147405 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Eissa S, Matboli M, Essawy NOE, Kotb YM (2015) Integrative functional genetic-epigenetic approach for selecting genes as urine biomarkers for bladder cancer diagnosis. Tumor Biol 36(12):9545–9552.  https://doi.org/10.1007/s13277-015-3722-6 CrossRefGoogle Scholar
  8. 8.
    Armstrong DA, Green BB, Seigne JD, Schned AR, Marsit CJ (2015) MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol Cancer 14(1):194.  https://doi.org/10.1186/s12943-015-0466-2 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sapre N, Macintyre G, Clarkson M et al (2016) A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. Br J Cancer 114(4):454–462.  https://doi.org/10.1038/bjc.2015.472 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ratert N, Meyer HA, Jung M et al (2013) MiRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 15(5):695–705.  https://doi.org/10.1016/j.jmoldx.2013.05.008 CrossRefPubMedGoogle Scholar
  11. 11.
    Yonemori M, Seki N, Yoshino H et al (2016) Dual tumor-suppressors miR-139-5p and miR-139-3p targeting matrix metalloprotease 11 in bladder cancer. Cancer Sci 107(9):1233–1242.  https://doi.org/10.1111/cas.13002 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Enokida H, Yoshino H, Matsushita R, Nakagawa M (2016) The role of microRNAs in bladder cancer. Investig Clin Urol 57(Suppl 1):S60.  https://doi.org/10.4111/icu.2016.57.S1.S60 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han Y, Chen J, Zhao X et al (2011) MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One 6(3):e18286.  https://doi.org/10.1371/journal.pone.0018286 (Wölfl S, ed) CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pazourkova E, Pospisilova S, Svobodova I et al (2016) Comparison of microRNA content in plasma and urine indicates the existence of a transrenal passage of selected microRNAs. Adv Exp Med Biol 924:97–100.  https://doi.org/10.1007/978-3-319-42044-8_18 CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang DZ, Lau KM, Chan ESY et al (2014) Cell-free urinary MicroRNA-99a and MicroRNA-125b are diagnostic markers for the non-invasive screening of bladder cancer. PLoS One 9(7):e100793.  https://doi.org/10.1371/journal.pone.0100793 (Dahiya R, ed) CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Choi S, Shin JH, Lee YR et al (2016) Urinary APE1/Ref-1: a potential bladder cancer biomarker. Dis Mark 2016:1–8.  https://doi.org/10.1155/2016/7276502 CrossRefGoogle Scholar
  17. 17.
    Deininger S, Hennenlotter J, Rausch S et al (2018) No influence of smoking status on the performance of urine markers for the detection of bladder cancer. J Cancer Res Clin Oncol 144(7):1367–1373.  https://doi.org/10.1007/s00432-018-2639-z CrossRefPubMedGoogle Scholar
  18. 18.
    Matsumoto R, Tsuda M, Wang L et al (2015) Adaptor protein CRK induces epithelial-mesenchymal transition and metastasis of bladder cancer cells through HGF/c-Met feedback loop. Cancer Sci 106(6):709–717.  https://doi.org/10.1111/cas.12662 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Mbeutcha A, Lucca I, Mathieu R, Lotan Y, Shariat SF (2016) Current status of urinary biomarkers for detection and surveillance of bladder cancer. Urol Clin North Am 43(1):47–62.  https://doi.org/10.1016/j.ucl.2015.08.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Knowles MA, Hurst CD (2015) Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15(1):25–41.  https://doi.org/10.1038/nrc3817 CrossRefPubMedGoogle Scholar
  21. 21.
    Tang KWA, Toh QC, Teo BW (2015) Normalisation of urinary biomarkers to creatinine for clinical practice and research–when and why. Singapore Med J 56(1):7–10. http://www.ncbi.nlm.nih.gov/pubmed/25640093. Accessed 28 Nov 2018CrossRefGoogle Scholar
  22. 22.
    Zhou H, Yuen PST, Pisitkun T et al (2006) Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69(8):1471–1476.  https://doi.org/10.1016/j.polymdegradstab.2005.10.005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Çokluk Ö (2010) Lojistik regresyon analizi: kavram ve uygulama. Kuram ve Uygulamada Eğitim Bilimleri 10(3):1357–1407Google Scholar
  24. 24.
    Andreu Z, Otta Oshiro R, Redruello A et al (2017) Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression. Eur J Pharm Sci 98:70–79.  https://doi.org/10.1016/j.ejps.2016.10.008 CrossRefPubMedGoogle Scholar
  25. 25.
    Soria F, Droller MJ, Lotan Y et al (2018) An up-to-date catalog of available urinary biomarkers for the surveillance of non-muscle invasive bladder cancer. World J Urol.  https://doi.org/10.1007/s00345-018-2380-x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Crossland RE, Norden J, Bibby LA, Davis J, Dickinson AM (2016) Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J Immunol Methods 429:39–49.  https://doi.org/10.1016/j.jim.2015.12.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Soung YH, Nguyen T, Cao H, Lee J, Chung J (2016) Emerging roles of exosomes in cancer invasion and metastasis. BMB Rep 49(1):18–25.  https://doi.org/10.5483/bmbrep.2016.49.1.239 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Eissa S, Matboli M, Hegazy MGA, Kotb YM, Essawy NOE (2015) Evaluation of urinary microRNA panel in bladder cancer diagnosis: relation to bilharziasis. Transl Res 165(6):731–739.  https://doi.org/10.1016/j.trsl.2014.12.008 CrossRefPubMedGoogle Scholar
  29. 29.
    Cai Q, Wu Y, Guo Z et al (2015) Urine BLCA-4 exerts potential role in detecting patients with bladder cancers: a pooled analysis of individual studies. Oncotarget 6(35):37500–37510.  https://doi.org/10.18632/oncotarget.6061 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mowatt G, Zhu S, Kilonzo M et al (2010) Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess (Rockv) 14(4):1–331.  https://doi.org/10.3310/hta14040 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gökçe Güllü Amuran
    • 1
  • Ilker Tinay
    • 2
  • Deniz Filinte
    • 3
  • Can Ilgin
    • 4
  • Irem Peker Eyüboğlu
    • 1
  • Mustafa Akkiprik
    • 1
    Email author
  1. 1.Department of Medical Biology, School of MedicineMarmara UniversityIstanbulTurkey
  2. 2.Department of Urology, School of MedicineMarmara UniversityIstanbulTurkey
  3. 3.Department of Pathology, School of MedicineMarmara UniversityIstanbulTurkey
  4. 4.Department of Public Health, School of MedicineMarmara UniversityIstanbulTurkey

Personalised recommendations