Cavernous smooth muscles: innovative potential therapies are promising for an unrevealed clinical diagnosis

  • Ahmed Mohamed HassaninEmail author
  • Ahmed Zain Abdel-Hamid
Urology - Review


While erectile dysfunction (ED) is highly prevalent worldwide, unrevealed cavernous smooth muscles (CSM) defects can confound the diagnosis of vascular ED and lead to failure of treatments. Currently, the first-line oral treatment for ED is phosphodiesterase type 5 inhibitors (PDE5Is). Patients with diabetes mellitus (DM), those who have undergone a radical prostatectomy (RP), and the elderly population are difficult to treat by the PDE5Is; unrevealed CSM defects can result in corporo veno-occlusive dysfunction (CVOD); and penile veno-ligation surgeries are currently abandoned due to high failure rates. It has been found that gene and stem cell therapies, among others, reduce cavernous tissue apoptosis and fibrosis and can specifically target CSM defects such as the nitric oxide (NO)-mediated signaling pathway, Rho–ROCK system, and transformation growth factor (TGF)-β1/angiotensin II (Ang II) pathway, in several laboratory animals. Current data clarify the need of diagnostic techniques that can provide an initial assessment of CSM. This assessment should be essential before giving a diagnosis of vascular ED and before applying several tests searching for a specific CSM defect to guide the specific therapy. Moreover, while patients with corporal fibrosis would fail the current medical therapies, these patients can benefit from the stem cell-based therapies that induce the internal mechanisms of tissue repair. However, penile elastography can determine the stiffness of tissues and corpus cavernosum electromyography (CC-EMG) can assess the integrated activity of CSM bulk, further refinements are required for these techniques before being considered in the evaluation of patients with ED. In conclusion, on the basis of the current scientific research, it may be possible to formulate new therapies and achieve the appropriate selection of patients who can benefit from these therapies.


Cavernous smooth muscle CC-EMG Corpus cavernosum electromyography Color duplex Doppler ultrasonography Gene therapy Penile elastography Stem cell therapy Veno-occlusive dysfunction 


Ang II

Angiotensin II


Corpus cavernosum electromyography


Color Duplex Doppler Ultrasonography


Cyclic guanosine monophosphate


Cavernous nerve


Cavernous smooth muscles


Corporo veno-occlusive dysfunction


Dehydrated human amnion/chorion membrane


Diabetes mellitus


Erectile dysfunction


Endothelial nitric oxide synthase


G-protein-coupled receptor kinase 2


Guanosine triphosphate


Human smooth muscle Maxi-K channel


Intracorporal injection


Inducible nitric oxide synthase


Long non-coding RNAs


Mesenchymal stem cells


Neuronal nitric oxide synthase


Nitric oxide


Nitric oxide synthase


Phosphodiesterase type 5 inhibitors


Plasmid expressing iNOS


Protein kinase


Rho-associated protein kinase


Radical prostatectomy


Short hairpin RNA


Transformation growth factor





This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.


  1. 1.
    Dean RC, Lue TF (2005) Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin N Am 32:379–395CrossRefGoogle Scholar
  2. 2.
    Feldman HA, Goldstein I, Hatzichristou DG, Krane RJ, McKinlay JB (1994) Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J Urol 151:54–61PubMedCrossRefGoogle Scholar
  3. 3.
    Yafi FA, Jenkins L, Albersen M, Corona G, Isidori AM, Goldfarb S, Maggi M, Nelson CJ, Parish S, Salonia A (2016) Erectile dysfunction. Nat Rev Dis Primers 2:16003PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lue TF (2000) Erectile dysfunction. N Engl J Med 342:1802–1813PubMedCrossRefGoogle Scholar
  5. 5.
    Hatzimouratidis K, Amar E, Eardley I, Giuliano F, Hatzichristou D, Montorsi F, Vardi Y, Wespes E (2010) Guidelines on male sexual dysfunction: erectile dysfunction and premature ejaculation. Eur Urol 57:804–814PubMedCrossRefGoogle Scholar
  6. 6.
    Renaud RC, Xuereb H (2002) Erectile-dysfunction therapies. Nat Rev Drug Discov 1:663–664PubMedCrossRefGoogle Scholar
  7. 7.
    Gur S, Kadowitz PJ, Hellstrom WJG (2010) Exploring the potential of NO independent stimulators and activators of soluble guanylate cyclase for the medical treatment of erectile dysfunction. Curr Pharm 16:1619–1633CrossRefGoogle Scholar
  8. 8.
    Vickers MA, Wright EA (2004) Erectile dysfunction in the patient with diabetes mellitus. Am J Manag Care 10:S3–S11PubMedGoogle Scholar
  9. 9.
    Walz J, Burnett AL, Costello AJ, Eastham JA, Graefen M, Guillonneau B, Menon M, Montorsi F, Myers RP, Rocco B, Villers A (2010) A critical analysis of the current knowledge of surgical anatomy related to optimization of cancer control and preservation of continence and erection in candidates for radical prostatectomy. Eur Urol 57:179–192PubMedCrossRefGoogle Scholar
  10. 10.
    Ferrini MG, Kovanecz I, Sanchez S, Umeh C, Rajfer J, Gonzalez Cadavid NF (2009) Fibrosis and loss of smooth muscle in the corpora cavernosa precede corporal veno-occlusive dysfunction (CVOD) induced by experimental cavernosal nerve damage in the rat. J Sex Med 6:415–428PubMedCrossRefGoogle Scholar
  11. 11.
    Ferrini MG, Rivera S, Moon J, Vernet D, Rajfer J, Gonzalez-Cadavid NF (2010) The genetic inactivation of inducible nitric oxide synthase (iNOS) intensifies fibrosis and oxidative stress in the penile corpora cavernosa in type 1 diabetes. J Sex Med 7:3033–3044PubMedCrossRefGoogle Scholar
  12. 12.
    Li H, Chen LP, Wang T, Wang SG, Liu JH (2018) Calpain inhibition improves erectile function in diabetic mice via upregulating endothelial nitric oxide synthase expression and reducing apoptosis. Asian J Androl 20:342–348PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wang Y, Meng XH, Zhang QJ, Wang YM, Chen C, Wang YC, Zhou X, Ji CJ, Song NH (2019) Losartan improves erectile function through suppression of corporal apoptosis and oxidative stress in rats with cavernous nerve injury. Asian J Androl 21:452–459PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ogaya-Pinies G, Palayapalam-Ganapathi H, Rogers T, Hernandez-Cardona E, Rocco B, Coelho RF, Jenson C, Patel VR (2018) Can dehydrated human amnion/chorion membrane accelerate the return to potency after a nerve-sparing robotic-assisted radical prostatectomy? Propensity score-matched analysis. J Robotic Surg 12:235–243CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Jia L, Ji W, Li H (2018) Angiotensin II silencing alleviates erectile dysfunction through down-regulating the Rhoa/Rho kinase signaling pathway in rats with diabetes mellitus. Cell Physiol Biochem 45:419–427PubMedCrossRefGoogle Scholar
  16. 16.
    Cho MC, Lee J, Park J, Oh S, Chai JS, Son H, Paick JS, Kim SW (2019) The effects of single versus combined therapy using LIM-kinase 2 inhibitor and type 5 phosphodiesterase inhibitor on erectile function in a rat model of cavernous nerve injury-induced erectile dysfunction. Asian J Androl 21:493–500PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wan ZH, Zhang YJ, Chen L, Guo YL, Li GH, Wu D, Wang Y (2019) G protein-coupled receptor kinase 2 inhibition improves erectile function through amelioration of endothelial dysfunction and oxidative stress in a rat model of type 2 diabetes. Asian J Androl 21:74–79CrossRefGoogle Scholar
  18. 18.
    Diederichs W, Stief CG, Lue TF, Tanagho EA (1991) Sympathetic inhibition of papaverine induced erection. J Urol 146:195–198PubMedCrossRefGoogle Scholar
  19. 19.
    Kim SC, Oh MM (1992) Norepinephrine involvement in response to intracorporeal injection of papaverine in psychogenic impotence. J Urol 147:1530–1532PubMedCrossRefGoogle Scholar
  20. 20.
    Nehra A, Goldstein I, Pabby A, Nugent M, Huang YH, de las Morenas A, Krane RJ, Udelson D, de Tejada IS, Moreland RB (1996) Mechanisms of venous leakage: a prospective clinicopathological correlation of corporeal function and structure. J Urol 156:1320–1329PubMedCrossRefGoogle Scholar
  21. 21.
    Cavallini G, Maretti C (2018) Unreliability of the duplex scan in diagnosing corporeal venous occlusive disease in young healthy men with erectile deficiency. Urology 113:91–98PubMedCrossRefGoogle Scholar
  22. 22.
    Hamidi N, Altinbas NK, Gokce MI, Suer E, Yagci C, Baltaci S, Turkolmez K (2017) Preliminary results of a new tool to evaluate cavernous body fibrosis following radical prostatectomy: penile elastography. Andrology 5:999–1006PubMedCrossRefGoogle Scholar
  23. 23.
    Hu JL, Chen HX, Chen HR, Wu Y, Sun XW, Li Z, Xing JF (2019) Novel noninvasive quantification of penile corpus cavernosum lesions in hyperlipidemia-induced erectile dysfunction in rabbits by two-dimensional shear-wave elastography. Asian J Androl 21:143–149PubMedCrossRefGoogle Scholar
  24. 24.
    Leddy LS, Jiang X, Gottsch HP, Yang CC (2012) Corpus cavernosum electromyography revisited: defining the origin of the signal. J Urol 187:589–593PubMedCrossRefGoogle Scholar
  25. 25.
    Jung J, Jo HW, Kwon H, Jeong NY (2014) Clinical neuroanatomy and neurotransmitter-mediated regulation of penile erection. Int Neurourol J 18:58–62PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Burnett AL, Lowenstein CJ, Bredt DS, Chang TS, Snyder SH (1992) Nitric oxide: a physiologic mediator of penile erection. Science 257:401–403PubMedCrossRefGoogle Scholar
  27. 27.
    Burnett AL (1995) Role of nitric oxide in the physiology of erection. Biol Reprod 52:485–489PubMedCrossRefGoogle Scholar
  28. 28.
    Corbin JD (2004) Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int J Impot Res 16:S4–S7PubMedCrossRefGoogle Scholar
  29. 29.
    Gonzalez-Cadavid NF, Rajfer J (2005) The pleiotropic effects of inducible nitric oxide synthase (iNOS) on the physiology and pathology of penile erection. Curr Pharm Des 11:4041–4046PubMedCrossRefGoogle Scholar
  30. 30.
    Traish AM, Park K, Dhir V, Kim NN, Moreland RB, Goldstein I (1999) Effects of castration and androgen replacement on erectile function in a rabbit model. Endocrinology 140:1861–1868PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Traish AM, Toselli P, Jeong SJ, Kim NN (2005) Adipocyte accumulation in penile corpus cavernosum of the orchiectomized rabbit: a potential mechanism for veno-occlusive dysfunction in androgen deficiency. J Androl 26:242–248PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Armagan A, Hatsushi K, Toselli P (2007) The effects of testosterone deficiency on the structural integrity of the penile dorsal nerve in the rat. Int J Impot Res 20:73–78PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rees RW, Ralph DJ, Royle M, Moncada S, Cellek S (2001) Y-27632, an inhibitor of Rho-kinase, antagonizes noradrenergic contractions in the rabbit and human penile corpus cavernosum. Br J Pharmacol 133:455–458PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Budzyn K, Marley PD, Sobey CG (2006) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Albersen M, Linsen L, Tinel H, Sandner P, Van Renterghem K (2013) Synergistic effects of BAY 60 4552 and vardenafil on relaxation of corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure. J Sex Med 10:1268–1277PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bivalacqua TJ, Champion HC, Usta MF, Cellek S, Chitaley K, Webb RC, Lewis RL, Mills TM, Hellstrom WJ, Kadowitz PJ (2004) RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 101:9121–9126PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gratzke C, Strong TD, Gebska MA, Champion HC, Stief CG, Burnett AL, Bivalacqua TJ (2010) Activated RhoA/Rho kinase impairs erectile function after cavernous nerve injury in rats. J Urol 184:2197–2204PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Jin L, Liu T, Lagoda GA, Champion HC, Bivalacqua TJ, Burnett AL (2006) Elevated RhoA/Rho-kinase activity in the aged rat penis: mechanism for age-associated erectile dysfunction. FASEB J 20:536–538PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Uvin P, Albersen M, Bollen I, Falter M, Weyne E, Linsen L, Tinel H, Sandner P, Bivalacqua TJ, De Ridder DJ, Van der Aa F (2017) Additive effects of the Rho kinase inhibitor Y-27632 and vardenafil on relaxation of the corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure. BJU Int 119:325–332PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pan L, Ma J, Pan F, Zhao D, Gao J (2015) Long non-coding RNA expression profiling in aging rats with erectile dysfunction. Cell Physiol Biochem 37:1513–1526PubMedCrossRefGoogle Scholar
  41. 41.
    Wen J, Wang B, Du C, Xu G, Zhang Z, Li Y, Zhang N (2015) A2B adenosine receptor agonist improves erectile function in diabetic rats. Tohoku J Exp Med 237:141–148PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Del Carlo M, Cole AA, Levine LA (2008) Differential calcium independent regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by interleukin-1beta and transforming growth factor- beta in Peyronie’s plaque fibroblasts. J Urol 179:2447–2455PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Davila HH, Magee TR, Vernet D, Rajfer J, Gonzalez-Cadavid NF (2004) Gene transfer of inducible nitric oxide synthase complementary DNA regresses the fibrotic plaque in an animal model of Peyronie’s disease. Biol Reprod 71:1568–1577PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Montorsi F, Brock G, Lee J, Shapiro J, Van Poppel H, Graefen M, Stief C (2008) Effect of nightly versus on-demand vardenafil on recovery of erectile function in men following bilateral nerve-sparing radical prostatectomy. Eur Urol 54:924–931PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Montorsi F, Brock G, Stolzenburg JU, Mulhall J, Moncada I, Patel HR, Chevallier D, Krajka K, Henneges C, Dickson R, Buttner H (2014) Effects of tadalafil treatment on erectile function recovery following bilateral nerve-sparing radical prostatectomy: a randomised placebo-controlled study (REACTT). Eur Urol 65:587–596PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Yang F, Chung AC, Huang XR, Lan HY (2009) Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Hypertension 54:877–884PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kilarkaje N, Yousif MH, El-Hashim AZ, Makki B, Akhtar S, Benter IF (2013) Role of angiotensin II and angiotensin-(1-7) in diabetes-induced oxidative DNA damage in the corpus cavernosum. Fertil Steril 100:226–233PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhang LW, Piao S, Choi MJ, Shin HY, Jin HR, Kim WJ, Song SU, Han JY, Park SH, Mamura M, Kim SJ (2008) Role of increased penile expression of transforming growth factor-β1 and activation of the Smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med 5:2318–2329PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Canguven O, Lagoda G, Sezen SF, Burnett AL (2009) Losartan preserves erectile function after bilateral cavernous nerve injury via antifibrotic mechanisms in male rats. J Urol 181:2816–2822PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Cho MC, Park K, Kim SW, Paick JS (2015) Restoration of erectile function by suppression of corporal apoptosis, fibrosis and corporal veno-occlusive dysfunction with rho-kinase inhibitors in a rat model of cavernous nerve injury. J Urol 193:1716–1723PubMedCrossRefGoogle Scholar
  51. 51.
    Wei AY, He SH, Zhao JF, Liu Y, Hu YW, Zhang T, Wu ZY (2012) Characterization of corpus cavernosum smooth muscle cell phenotype in diabetic rats with erectile dysfunction. Int J Impot Res 24:196–201PubMedCrossRefGoogle Scholar
  52. 52.
    Yang F, Zhao JF, Shou QY, Huang XJ, Chen G, Yang KB, Zhang SG, Lv BD, Fu HY (2014) Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy. PLoS One 9:e105186PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wilkes N, White S, Stein P, Bernie J, Rajasekaran M (2004) Phosphodiesterase- 5 inhibition synergizes rho-kinase antagonism and enhances erectile response in male hypertensive rats. Int J Impot Res 16:187–194PubMedCrossRefGoogle Scholar
  54. 54.
    Rajasekaran M, White S, Baquir A, Wilkes N (2005) Rho-kinase inhibition improves erectile function in aging male Brown-Norway rats. J Androl 26:182–188PubMedCrossRefGoogle Scholar
  55. 55.
    Hannan JL, Albersen M, Kutlu O, Gratzke C, Stief CG, Burnett AL, Lysiak JJ, Hedlund P, Bivalacqua TJ (2013) Inhibition of Rho-kinase improves erectile function, increases nitric oxide signaling and decreases penile apoptosis in a rat model of cavernous nerve injury. J Urol 189:1155–1161PubMedCrossRefGoogle Scholar
  56. 56.
    Li WJ, Wang H, Zhou J, Li B, Zhang J, Lu M, Wang Z (2013) P144, A TGF-beta1 antagonist peptide, synergizes with sildenafil and enhances erectile response via amelioration of cavernosal fibrosis in diabetic rats. J Sex Med 10:2942–2951PubMedCrossRefGoogle Scholar
  57. 57.
    Toblli JE, Cao G, Lombrana A, Rivero M (2007) Functional and morphological improvement in erectile tissue of hypertensive rats by long-term combined therapy with phosphodiesterase type 5 inhibitor and losartan. J Sex Med 4:1291–1303PubMedCrossRefGoogle Scholar
  58. 58.
    Daniel C (2008) Blocking of angiotensin II is more than blocking of transforming growth factor-beta. Kidney Int 74:551–553PubMedCrossRefGoogle Scholar
  59. 59.
    Zelen CM, Gould L, Serena TE, Carter MJ, Keller J, Li WW (2015) A prospective, randomised, controlled, multi-centre comparative effectiveness study of healing using dehydrated human amnion/chorion membrane allograft, bioengineered skin substitute or standard of care for treatment of chronic lower extremity diabetic ulcers. Int Wound J 12:724–732PubMedCrossRefGoogle Scholar
  60. 60.
    Patel VR, Samavedi S, Bates AS, Kumar A, Coelho R, Rocco B, Palmer K (2015) Dehydrated human amnion/chorion membrane allograft nerve wrap around the prostatic neurovascular bundle accelerates early return to continence and potency following robot-assisted radical prostatectomy: propensity score–matched analysis. Eur Urol 67:977–980PubMedCrossRefGoogle Scholar
  61. 61.
    Yoshimura N, Kato R, Chancellor MB, Nelson JB, Glorioso JC (2010) Gene therapy as future treatment of erectile dysfunction. Expert Opin Biol Th 10:1305–1314CrossRefGoogle Scholar
  62. 62.
    Kendirci M, Teloken PE, Champion HC, Hellstrom WJ, Bivalacqua TJ (2006) Gene therapy for erectile dysfunction: fact or fiction? Eur Urol 50:1208–1222PubMedCrossRefGoogle Scholar
  63. 63.
    Garban H, Marlnquez D, Magee T, Moody J, Rajavashisth T, Rodriguez JA, Hung A, Vernet D, Rajfer J, Gonzalez-Cadavid NF (1997) Cloning of rat and human inducible penile nitric oxide synthase. Application for gene therapy of erectile dysfunction. Biol Reprod 56:954–963PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang HB, Wang ZQ, Chen FZ, Ding W, Liu WB, Chen ZR, He SH, Wei AY (2017) Maintenance of the contractile phenotype in corpus cavernosum smooth muscle cells by Myocardin gene therapy ameliorates erectile dysfunction in bilateral cavernous nerve injury rats. Andrology 5:798–806PubMedCrossRefGoogle Scholar
  65. 65.
    Melman A, Bar-Chama N, McCullough A, Davies K, Christ G (2006) h Maxi-K gene transfer in males with erectile dysfunction: results of the first human trial. Hum Gene Ther 17:1165–1176PubMedCrossRefGoogle Scholar
  66. 66.
    Peak TC, Anaissie J, Hellstrom WJ (2016) Current perspectives on stem cell therapy for erectile dysfunction. Sex Med Rev 43:247–256CrossRefGoogle Scholar
  67. 67.
    Mangir N, Türkeri L (2017) Stem cell therapies in post-prostatectomy erectile dysfunction: a critical review. Can J Urol 24:8609–8619PubMedGoogle Scholar
  68. 68.
    Masouminia M, Gelfand R, Kovanecz I, Vernet D, Tsao J, Salas R, Castro K, Loni L, Rajfer J, Gonzalez-Cadavid NF (2018) Dyslipidemia is a major factor in stem cell damage induced by uncontrolled long-term type 2 diabetes and obesity in the rat, as suggested by the effects on stem cell culture. J Sex Med 15:1678–1697PubMedCrossRefGoogle Scholar
  69. 69.
    Kovanecz I, Gelfand R, Lin G, Sharifzad S, Ohanian A, Ricks R, Lue T, Gonzalez-Cadavid NF (2019) Stem cells from a female rat model of type 2 diabetes/obesity and stress urinary incontinence are damaged by in vitro exposure to its dyslipidemic serum, predicting inadequate repair capacity in vivo. Int J Mol Sci 20:4044. CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232PubMedCrossRefGoogle Scholar
  71. 71.
    Yiou R, Mahrouf-Yorgov M, Trebeau C, Zanaty M, Lecointe C, Souktani R, Zadigue P, Figeac F, Rodriguez AM (2016) Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms. Stem Cells 34:392–404PubMedCrossRefGoogle Scholar
  72. 72.
    Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell free therapy. Stem Cells 35(851–8):20Google Scholar
  73. 73.
    Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Perez Lanzon M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, Pegtel DM (2015) Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6:127–147PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Xu Y, Guan R, Lei H, Li H, Wang L, Gao Z, Song W, Xin Z (2014) Therapeutic potential of adipose-derived stem cells-based microtissues in a rat model of postprostatectomy erectile dysfunction. J Sex Med 11:2439–2448PubMedCrossRefGoogle Scholar
  75. 75.
    Li M, Lei H, Xu Y, Li H, Yang B, Yu C, Yuan Y, Fang D, Xin Z, Guan R (2018) Exosomes derived from mesenchymal stem cells exert therapeutic effect in a rat model of cavernous nerves injury. Andrology 6:927–935PubMedCrossRefGoogle Scholar
  76. 76.
    Ouyang X, Han X, Chen Z, Fang J, Huang X, Wei H (2018) MSC-derived exosomes ameliorate erectile dysfunction by alleviation of corpus cavernosum smooth muscle apoptosis in a rat model of cavernous nerve injury. Stem Cell Res Ther 9:246. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Gonzalez-Cadavid NF, Rajfer J (2010) Treatment of Peyronie’s disease with PDE5 inhibitors: an antifibrotic strategy. Nat Rev Urol 7:215–221PubMedCrossRefGoogle Scholar
  78. 78.
    Gonzalez-Cadavid NF, Rajfer J (2019) The two phases of the clinical validation of preclinical translational mechanistic research on PDE5 inhibitors since Viagra’s advent. A personal perspective. Int J Impot Res 31:57–60PubMedCrossRefGoogle Scholar
  79. 79.
    Nunes KP, Teixeira CE, Priviero FB, Toque HA, Webb RC (2015) Beneficial effect of the soluble guanylyl cyclase stimulator BAY 41-2272 on impaired penile erection in db/db -/- type II diabetic and obese mice. J Pharmacol Exp Ther 353:330–339PubMedCrossRefGoogle Scholar
  80. 80.
    Zhang KQ, Chen D, Sun DQ, Zhang H, Li B, Fu Q (2016) Probucol improves erectile function by restoring endothelial function and preventing cavernous fibrosis in streptozotocin-induced diabetic rats. Urology 91:241-e9CrossRefGoogle Scholar
  81. 81.
    Cui K, Luan Y, Tao Wang LZ, Rao K, Wang SG, Ye ZQ, Liu JH, Wang DW (2017) Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1. Asian J Androl 19:67–72PubMedCrossRefGoogle Scholar
  82. 82.
    Cui K, Tang Z, Li CC, Wang T, Rao K, Wang SG, Liu JH, Chen Z (2018) Lipoxin A4 improves erectile dysfunction in rats with type I diabetes by inhibiting oxidative stress and corporal fibrosis. Asian J Androl 2:166–172Google Scholar
  83. 83.
    Montorsi F, Nehra A, Goldstein I, Pabby A, Nugent M, Huang YH, de las Morenas A, Krane RJ, Udelson D, de Tejada IS, Moreland RB (1996) Mechanisms of venous leakage: a prospective clinicopathological correlation of corporeal function and structure. J Urol 156:1320–1329CrossRefGoogle Scholar
  84. 84.
    Adaikan G, Becher E, Giuliano F, Khoury S, Lue TF, Sharlip I, Althof SE, Andersson KE, Brock G, Broderick G (2010) Summary of the recommendations on sexual dysfunctions in men. J Sex Med 7:3572–3588PubMedCrossRefGoogle Scholar
  85. 85.
    Hsieh CH, Hsieh JT, Chang SJ, Chiang IN, Shei-Dei Yang S (2016) Penile venous surgery for treating erectile dysfunction: past, present, and future perspectives with regard to new insights in venous anatomy. Urol Sci 27:60–65CrossRefGoogle Scholar
  86. 86.
    Cho MC, Song WH, Paick JS (2018) Suppression of cavernosal fibrosis in a rat model. Sex Med Rev 6:572–582PubMedCrossRefGoogle Scholar
  87. 87.
    Moreland RB (2000) Pathophysiology of erectile dysfunction: the contributions of trabecular structure to function and the role of functional antagonism. Int J Impot Res 12(suppl 4):S39–S46PubMedCrossRefGoogle Scholar
  88. 88.
    Andric SA, Janjic MM, Stojkov NJ, Kostic TS (2010) Testosterone-induced modulation of nitric oxide-cGMP signaling pathway and androgenesis in the rat Leydig cells. Biol Reprod 83:434–442PubMedCrossRefGoogle Scholar
  89. 89.
    Yassin AA, Saad F, Traish A (2006) Testosterone undecanoate restores erectile function in a subset of patients with venous leakage: a series of case reports. J Sex Med 3:727–735PubMedCrossRefGoogle Scholar
  90. 90.
    Wespes E, Goes PM, Schiffmann S, Depierreux M, Vanderhaeghen JJ, Schulman CC (1991) Computerized analysis of smooth muscle fibers in potent and impotent patients. J Urol 146:1015–1017PubMedCrossRefGoogle Scholar
  91. 91.
    Wespes E (2004) Cavernosal smooth muscle biopsy is a useful tool in the diagnosis of erectile dysfunction. Curr Sex Health Rep 1:40–43CrossRefGoogle Scholar
  92. 92.
    Shafik A, Ahmed I, El Sibai O, Shafik AA (2006) The hypoactive corpora cavernosa with degenerative erectile dysfunction: a new syndrome. BMC Urol 6:13PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Inci E, Turkay R, Nalbant MO, Yenice MG, Tugcu V (2017) The value of shear wave elastography in the quantification of corpus cavernosum penis rigidity and its alteration with age. Eur J Radiol 89:106–110PubMedCrossRefGoogle Scholar
  94. 94.
    Wagner G, Gerstenberg T, Levin RJ (1989) Electrical activity of corpus cavernosum during flaccidity and erection of the human penis: a new diagnostic method? J Urol 142:723–725PubMedCrossRefGoogle Scholar
  95. 95.
    Merckx L, Gerstenberg TC, Da Silva JP, Pörtner M, Stief CC (1996) A consensus on the normal characteristics of corpus cavernosum EMG. Int J Impot Res 8:75–77PubMedGoogle Scholar
  96. 96.
    Sasso F, Gulino G, Alcini E (1996) Corpus cavernosum electromyography (CC-EMG): a new technique in the diagnostic work-up of impotence. Int Urol Nephrol 28:805–818PubMedCrossRefGoogle Scholar
  97. 97.
    Meuleman E, Jiang X, Holsheimer J, Wagner G, Knipscheer B, Wijkstra H (2007) Corpus cavernosum electromyography with revised methodology: an explorative study in patients with erectile dysfunction and men with reported normal erectile function. J Sex Med 4:191–198PubMedCrossRefGoogle Scholar
  98. 98.
    Roaiah MM, Kader AA, Hassanin AM, Maged M, Murshed MA (2019) The application of spontaneous corpus cavernosum EMG to assess the status of cavernous smooth muscles, a preliminary study. Rev Int Androl 17:1–7PubMedGoogle Scholar
  99. 99.
    Pickard RS, King P, Zar MA, Powell PH (1994) Corpus cavernosal relaxation in impotent men. BJU 74:485–491PubMedCrossRefGoogle Scholar
  100. 100.
    Kayigil Ö, Atahan Ö, Metin A (1996) Electrical activity of the corpus cavernosum in patients with corporal veno-occlusive dysfunction. BJU Int 77:261–265CrossRefGoogle Scholar
  101. 101.
    Virseda-Chamorro M, Lopez-Garcia-Moreno AM, Salinas-Casado J, Esteban-Fuertes M (2012) Usefulness of electromyography of the cavernous corpora (CC EMG) in the diagnosis of arterial erectile dysfunction. Int J Impot Res 24:165–169PubMedCrossRefGoogle Scholar
  102. 102.
    Kayıgil Ö, Agras K, Metin A (2007) Relaxation degree of cavernous smooth muscle: a novel parameter to predict postoperative success in penile revascularization. Int Urol Nephrol 39:1203–1208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Andrology and Sexology, Faculty of MedicineCairo UniversityCairoEgypt
  2. 2.Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations