Advertisement

International Urology and Nephrology

, Volume 51, Issue 6, pp 1059–1070 | Cite as

Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells

  • Zhongxin Li
  • Jingjing Zhou
  • Yan Li
  • Fan Yang
  • Xiaoying Lian
  • Wenhu LiuEmail author
Nephrology - Original Paper
  • 178 Downloads

Abstract

Purpose

Previous studies indicate that autosomal dominant polycystic kidney disease (ADPKD) cells exhibited dysregulated calcium homeostasis and enhanced cell proliferation. TRPC3 has been shown to function in the modulation of calcium and sodium entry, but whether TRPC3 plays a role in cellular abnormalities of ADPKD cells has not been defined.

Methods

Human conditionally immortalized proximal tubular epithelial cells and mouse IMCD3 cells were used with polycystin-2 (PC2, TRPP2) knockdown. Cell proliferation assay was used to detect the cell proliferations upon different treatments. QRT-PCR and western blotting were used to measure the expression profiles of TRPP2 and other proteins. High-resolution respirometry, enzymic activities and ROS levels were detected to reflect the mitochondrial functions. Calcium and sodium uptakes were measured using Fura2-AM and SBFI dyes.

Results

We showed that PC2 knockdown promoted cell proliferation, ROS productions and ERK phosphorylation, compared with negative control. Meanwhile, we demonstrated that receptor-operated calcium entry (ROCE) exhibited less reductions compared with store-operated calcium entry (SOCE) upon PC2 knockdown. Inhibition of ROCE and SOCE by specific inhibitors partially reversed the enhanced cell proliferation, ROS productions and ERK phosphorylation induced by PC2 knockdown. Moreover, TRPC3 upregulation was observed upon PC2 knockdown, which acted as both SOC and ROC, promoting cation entry, cell proliferation and ERK phosphorylation. Furthermore, we showed that mitochondrial located TRPC3 was upregulated and modulating mitochondrial calcium uptake, thus promoting the ROS productions in the presence of PC2 knockdown.

Conclusions

We demonstrated that TRPC3 upregulation upon PC2 knockdown aggravated the mitochondrial abnormalities and cell proliferation by modulating mitochondrial calcium uptake. Targeting TRPC3 might be a promising target for ADPKD treatment.

Keywords

ADPKD TRPP2 TRPC3 Mitochondria ERK 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Harris PC (2002) Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr Opin Nephrol Hypertens 11(3):309–314CrossRefPubMedGoogle Scholar
  2. 2.
    Chapman AB, Devuyst O, Eckardt KU, Gansevoort RT, Harris T, Horie S, Kasiske BL, Odland D, Pei Y, Perrone RD, Pirson Y, Schrier RW, Torra R, Torres VE, Watnick T, Wheeler DC, Conference P (2015) Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int 88(1):17–27.  https://doi.org/10.1038/ki.2015.59 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hateboer N, Dijk MA, Bogdanova N, Coto E, Saggar-Malik AK, San Millan JL, Torra R, Breuning M, Ravine D (1999) Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353(9147):103–107CrossRefPubMedGoogle Scholar
  4. 4.
    Piazzon N, Maisonneuve C, Guilleret I, Rotman S, Constam DB (2012) Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing. J Mol Cell Biol 4(6):398–408.  https://doi.org/10.1093/jmcb/mjs027 CrossRefPubMedGoogle Scholar
  5. 5.
    Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ (2000) cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57(4):1460–1471.  https://doi.org/10.1046/j.1523-1755.2000.00991.x CrossRefPubMedGoogle Scholar
  6. 6.
    Kuo IY, DesRochers TM, Kimmerling EP, Nguyen L, Ehrlich BE, Kaplan DL (2014) Cyst formation following disruption of intracellular calcium signaling. Proc Natl Acad Sci USA 111(39):14283–14288.  https://doi.org/10.1073/pnas.1412323111 CrossRefPubMedGoogle Scholar
  7. 7.
    Klawitter J, Reed-Gitomer BY, McFann K, Pennington A, Klawitter J, Abebe KZ, Klepacki J, Cadnapaphornchai MA, Brosnahan G, Chonchol M, Christians U, Schrier RW (2014) Endothelial dysfunction and oxidative stress in polycystic kidney disease. Am J Physiol Renal Physiol 307(11):F1198–F1206.  https://doi.org/10.1152/ajprenal.00327.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Menon V, Rudym D, Chandra P, Miskulin D, Perrone R, Sarnak M (2011) Inflammation, oxidative stress, and insulin resistance in polycystic kidney disease. Clin J Am Soc Nephrol 6(1):7–13.  https://doi.org/10.2215/CJN.04140510 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ou J, Ryu SY, Jhun BS, Hurst S, Sheu SS (2014) Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 21(6):987–1006.  https://doi.org/10.1089/ars.2013.5681 CrossRefGoogle Scholar
  10. 10.
    Wang P, Liu D, Tepel M, Zhu Z (2013) Transient receptor potential canonical type 3 channels—their evolving role in hypertension and its related complications. J Cardiovasc Pharmacol 61(6):455–460.  https://doi.org/10.1097/FJC.0b013e31828748a1 CrossRefPubMedGoogle Scholar
  11. 11.
    Tiapko O, Groschner K (2018) TRPC3 as a target of novel therapeutic interventions. Cells.  https://doi.org/10.3390/cells7070083 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Feng S, Li H, Tai Y, Huang J, Su Y, Abramowitz J, Zhu MX, Birnbaumer L, Wang Y (2013) Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci USA 110(27):11011–11016.  https://doi.org/10.1073/pnas.1309531110 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang B, Xiong S, Lin S, Xia W, Li Q, Zhao Z, Wei X, Lu Z, Wei X, Gao P, Liu D, Zhu Z (2017) Enhanced mitochondrial transient receptor potential channel, canonical type 3-mediated calcium handling in the vasculature from hypertensive rats. J Am Heart Assoc.  https://doi.org/10.1161/jaha.117.005812 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wilmer MJ, Saleem MA, Masereeuw R, Ni L, van der Velden TJ, Russel FG, Mathieson PW, Monnens LA, van den Heuvel LP, Levtchenko EN (2010) Novel conditionally immortalized human proximal tubule cell line expressing functional influx and efflux transporters. Cell Tissue Res 339(2):449–457.  https://doi.org/10.1007/s00441-009-0882-y CrossRefPubMedGoogle Scholar
  15. 15.
    Di Mise A, Ranieri M, Centrone M, Venneri M, Tamma G, Valenti D, Valenti G (2018) Activation of the calcium-sensing receptor corrects the impaired mitochondrial energy status observed in renal polycystin-1 knockdown cells modeling autosomal dominant polycystic kidney disease. Front Mol Biosci 5:77.  https://doi.org/10.3389/fmolb.2018.00077 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Guo W, Diao Z, Liu W (2017) Asymmetric dimethylarginine downregulates sarco/endoplasmic reticulum calciumATPase 3 and induces endoplasmic reticulum stress in human umbilical vein endothelial cells. Mol Med Rep 16(5):7541–7547.  https://doi.org/10.3892/mmr.2017.7529 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gubert C, Stertz L, Pfaffenseller B, Panizzutti BS, Rezin GT, Massuda R, Streck EL, Gama CS, Kapczinski F, Kunz M (2013) Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. J Psychiatr Res 47(10):1396–1402.  https://doi.org/10.1016/j.jpsychires.2013.06.018 CrossRefPubMedGoogle Scholar
  18. 18.
    Lemos FO, Ehrlich BE (2018) Polycystin and calcium signaling in cell death and survival. Cell Calcium 69:37–45.  https://doi.org/10.1016/j.ceca.2017.05.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Miyagi K, Kiyonaka S, Yamada K, Miki T, Mori E, Kato K, Numata T, Sawaguchi Y, Numaga T, Kimura T, Kanai Y, Kawano M, Wakamori M, Nomura H, Koni I, Yamagishi M, Mori Y (2009) A pathogenic C terminus-truncated polycystin-2 mutant enhances receptor-activated Ca2+ entry via association with TRPC3 and TRPC7. J Biol Chem 284(49):34400–34412.  https://doi.org/10.1074/jbc.M109.015149 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang P, Luo Y, Chasan B, Gonzalez-Perrett S, Montalbetti N, Timpanaro GA, Cantero Mdel R, Ramos AJ, Goldmann WH, Zhou J, Cantiello HF (2009) The multimeric structure of polycystin-2 (TRPP2): structural–functional correlates of homo- and hetero-multimers with TRPC1. Hum Mol Genet 18(7):1238–1251.  https://doi.org/10.1093/hmg/ddp024 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu DY, Thilo F, Scholze A, Wittstock A, Zhao ZG, Harteneck C, Zidek W, Zhu ZM, Tepel M (2007) Increased store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension. J Hypertens 25(4):799–808.  https://doi.org/10.1097/HJH.0b013e32803cae2b CrossRefPubMedGoogle Scholar
  22. 22.
    Ishimoto Y, Inagi R, Yoshihara D, Kugita M, Nagao S, Shimizu A, Takeda N, Wake M, Honda K, Zhou J, Nangaku M (2017) Mitochondrial abnormality facilitates cyst formation in autosomal dominant polycystic kidney disease. Mol Cell Biol.  https://doi.org/10.1128/mcb.00337-17 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Padovano V, Podrini C, Boletta A, Caplan MJ (2018) Metabolism and mitochondria in polycystic kidney disease research and therapy. Nat Rev Nephrol 14(11):678–687.  https://doi.org/10.1038/s41581-018-0051-1 CrossRefPubMedGoogle Scholar
  24. 24.
    Padovano V, Kuo IY, Stavola LK, Aerni HR, Flaherty BJ, Chapin HC, Ma M, Somlo S, Boletta A, Ehrlich BE, Rinehart J, Caplan MJ (2017) The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function. Mol Biol Cell 28(2):261–269.  https://doi.org/10.1091/mbc.E16-08-0597 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sing A, Tsatskis Y, Fabian L, Hester I, Rosenfeld R, Serricchio M, Yau N, Bietenhader M, Shanbhag R, Jurisicova A, Brill JA, McQuibban GA, McNeill H (2014) The atypical cadherin fat directly regulates mitochondrial function and metabolic state. Cell 158(6):1293–1308.  https://doi.org/10.1016/j.cell.2014.07.036 CrossRefPubMedGoogle Scholar
  26. 26.
    Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, Carroll TJ (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41(7):793–799.  https://doi.org/10.1038/ng.400 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu X, Aboudehen K, Zhang S, Kersjes K, Galasso R, Li J, Kaimal V, Lockton S, Davis S, Flaten A, Johnson JA, Holland WL, Kusminski CM, Scherer PE, Harris PC, Trudel M, Wallace DP, Igarashi P, Lee EC, Androsavich JR, Patel V (2017) microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8:14395.  https://doi.org/10.1038/ncomms14395 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, Susztak K (2016) Deletion of Lkb1 in renal tubular epithelial cells leads to CKD by altering metabolism. J Am Soc Nephrol 27(2):439–453.  https://doi.org/10.1681/ASN.2014121181 CrossRefPubMedGoogle Scholar
  29. 29.
    Lehtonen HJ, Kiuru M, Ylisaukko-Oja SK, Salovaara R, Herva R, Koivisto PA, Vierimaa O, Aittomaki K, Pukkala E, Launonen V, Aaltonen LA (2006) Increased risk of cancer in patients with fumarate hydratase germline mutation. J Med Genet 43(6):523–526.  https://doi.org/10.1136/jmg.2005.036400 CrossRefPubMedGoogle Scholar
  30. 30.
    Adam J, Hatipoglu E, O’Flaherty L, Ternette N, Sahgal N, Lockstone H, Baban D, Nye E, Stamp GW, Wolhuter K, Stevens M, Fischer R, Carmeliet P, Maxwell PH, Pugh CW, Frizzell N, Soga T, Kessler BM, El-Bahrawy M, Ratcliffe PJ, Pollard PJ (2011) Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20(4):524–537.  https://doi.org/10.1016/j.ccr.2011.09.006 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jia Y, Zhou J, Tai Y, Wang Y (2007) TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 10(5):559–567.  https://doi.org/10.1038/nn1870 CrossRefPubMedGoogle Scholar
  32. 32.
    Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci USA 106(13):5400–5405.  https://doi.org/10.1073/pnas.0808793106 CrossRefPubMedGoogle Scholar
  33. 33.
    Jin X, Muntean BS, Aal-Aaboda MS, Duan Q, Zhou J, Nauli SM (1842) L-type calcium channel modulates cystic kidney phenotype. Biochim Biophys Acta 9:1518–1526.  https://doi.org/10.1016/j.bbadis.2014.06.001 CrossRefGoogle Scholar
  34. 34.
    Doleschal B, Primessnig U, Wolkart G, Wolf S, Schernthaner M, Lichtenegger M, Glasnov TN, Kappe CO, Mayer B, Antoons G, Heinzel F, Poteser M, Groschner K (2015) TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovasc Res 106(1):163–173.  https://doi.org/10.1093/cvr/cvv022 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281(44):33487–33496.  https://doi.org/10.1074/jbc.M605536200 CrossRefPubMedGoogle Scholar
  36. 36.
    Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25(22):5305–5316.  https://doi.org/10.1038/sj.emboj.7601417 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Poteser M, Schleifer H, Lichtenegger M, Schernthaner M, Stockner T, Kappe CO, Glasnov TN, Romanin C, Groschner K (2011) PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes. Proc Natl Acad Sci USA 108(26):10556–10561.  https://doi.org/10.1073/pnas.1106183108 CrossRefPubMedGoogle Scholar
  38. 38.
    Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126(17):2051–2064.  https://doi.org/10.1161/CIRCULATIONAHA.112.121830 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Numaga-Tomita T, Kitajima N, Kuroda T, Nishimura A, Miyano K, Yasuda S, Kuwahara K, Sato Y, Ide T, Birnbaumer L, Sumimoto H, Mori Y, Nishida M (2016) TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Sci Rep 6:39383.  https://doi.org/10.1038/srep39383 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Smedlund KB, Birnbaumer L, Vazquez G (2015) Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc Natl Acad Sci USA 112(17):E2201–E2206.  https://doi.org/10.1073/pnas.1505410112 CrossRefPubMedGoogle Scholar
  41. 41.
    Becker EB, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, Nolan PM, Fisher EM, Davies KE (2009) A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci USA 106(16):6706–6711.  https://doi.org/10.1073/pnas.0810599106 CrossRefPubMedGoogle Scholar
  42. 42.
    Fogel BL, Hanson SM, Becker EB (2015) Do mutations in the murine ataxia gene TRPC3 cause cerebellar ataxia in humans? Mov Disord 30(2):284–286.  https://doi.org/10.1002/mds.26096 CrossRefPubMedGoogle Scholar
  43. 43.
    Wenning AS, Neblung K, Strauss B, Wolfs MJ, Sappok A, Hoth M (1813) Schwarz EC (2011) TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. Biochim Biophys Acta 3:412–423.  https://doi.org/10.1016/j.bbamcr.2010.12.022 CrossRefGoogle Scholar
  44. 44.
    Kitajima N, Numaga-Tomita T, Watanabe M, Kuroda T, Nishimura A, Miyano K, Yasuda S, Kuwahara K, Sato Y, Ide T, Birnbaumer L, Sumimoto H, Mori Y, Nishida M (2016) TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep 6:37001.  https://doi.org/10.1038/srep37001 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Chang HH, Cheng YC, Tsai WC, Tsao MJ, Chen Y (2018) Pyr3 induces apoptosis and inhibits migration in human glioblastoma cells. Cell Physiol Biochem 48(4):1694–1702.  https://doi.org/10.1159/000492293 CrossRefPubMedGoogle Scholar
  46. 46.
    Chen M, Liu J, Lu Y, Duan C, Lu L, Gao G, Chan P, Yu S, Yang H (2017) Age-dependent alpha-synuclein accumulation is correlated with elevation of mitochondrial TRPC3 in the brains of monkeys and mice. J Neural Transm (Vienna) 124(4):441–453.  https://doi.org/10.1007/s00702-016-1654-y CrossRefGoogle Scholar
  47. 47.
    Lu Z, Cui Y, Wei X, Gao P, Zhang H, Wei X, Li Q, Sun F, Yan Z, Zheng H, Yang G, Liu D, Zhu Z (2018) Deficiency of PKD2L1 (TRPP3) exacerbates pathological cardiac hypertrophy by augmenting NCX1-mediated mitochondrial calcium overload. Cell Rep 24(6):1639–1652.  https://doi.org/10.1016/j.celrep.2018.07.022 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Nephrology, Beijing Luhe HospitalCapital Medical UniversityBeijingChina
  2. 2.Department of Nephrology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina

Personalised recommendations