Advertisement

Evolution of protein-bound uremic toxins indoxyl sulphate and p-cresyl sulphate in acute kidney injury

  • Laurens VeldemanEmail author
  • Jill Vanmassenhove
  • Wim Van Biesen
  • Ziad A. Massy
  • Sophie Liabeuf
  • Griet Glorieux
  • Raymond Vanholder
Nephrology - Original Paper
  • 28 Downloads

Abstract

Background

There is a gradual increase in serum concentrations of protein-bound colon-derived uremic toxins indoxyl sulphate (IxS) and p-cresyl sulphate (pCS) as chronic kidney disease (CKD) progresses. In acute kidney injury (AKI), up till now, the retention pattern has not been studied.

Methods

In this study, 194 adult patients admitted with sepsis to the intensive care unit were included. IxS, pCS and serum creatinine (sCrea) were quantified at inclusion (D0) and at day 4, unless follow-up ended earlier (Dend).

Results

Serum levels of sCrea (P < 0.001), IxS (P < 0.001) and pCS (P < 0.05) were higher in patients with AKI according to RIFLE classification at D0. In contrast with sCrea, IxS and pCS levels only increased from stage I (IxS) and F (pCS) on. When grouped according to evolution in RIFLE class from D0 to Dend, all solute concentrations were higher (P < 0.001) in the group with unfavourable evolution. In this group, there was a marked rise in sCrea (P < 0.001), a moderate one for pCS (P < 0.05), but no change for IxS (P = 0.112). There was a decrease (P < 0.001) of all solute concentrations in the group with favourable evolution. Comparing AKI with CKD patients matched for sCrea, total levels of both IxS and pCS were higher (P < 0.01) in patients with CKD.

Conclusions

Although concentrations of IxS and pCS both tend to rise in sepsis patients with AKI, their evolution does not conform with that of sCrea. For the same level of sCrea, IxS and pCS concentrations are lower in AKI compared with CKD.

Keywords

AKI Sepsis Uremic toxins Indoxyl sulphate p-Cresyl sulphate 

Notes

Acknowledgements

The authors thank the technicians of the Ghent Nephrology Laboratory for the UPLC quantification of the uremic solutes.

Author contributions

LV conducted the statistical analysis and wrote the first draft. JV included the patients, collected the samples and the demographic data. RV and GG designed the study, helped writing the draft and critically reviewed it. SL and ZAM collected and provided the samples of CKD patients. JV, WVB, ZAM and SL revised the paper.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

Supplementary material

11255_2018_2056_MOESM1_ESM.docx (69 kb)
Supplementary material 1 (DOCX 69 KB)

References

  1. 1.
    Vanholder R, Fouque D, Glorieux G, Heine GH, Kanbay M, Mallamaci F, Massy ZA, Ortiz A, Rossignol P, Wiecek A, Zoccali C, London GM, European Renal Association European Dialysis, Transplant Association (ERA-EDTA) European Renal, Cardiovascular Medicine (EURECA-m) Working Group (2016) Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diab Endocrinol 4:360–373CrossRefGoogle Scholar
  2. 2.
    Herget-Rosenthal S, Glorieux G, Jankowski J, Jankowski V (2009) Uremic toxins in acute kidney injury. Semin Dial 22:445–448CrossRefGoogle Scholar
  3. 3.
    Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W, European Uremic Toxin Work Group (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63:1934–1943CrossRefGoogle Scholar
  4. 4.
    Evenepoel P, Glorieux G, Meijers B (2017) p-Cresol sulfate and indoxyl sulfate: some clouds are gathering in the uremic toxin sky. Kidney Int 92:1323–1324CrossRefGoogle Scholar
  5. 5.
    Wu IW, Hsu KH, Lee CC, Sun CY, Hsu HJ, Tsai CJ, Tzen CY, Wang YC, Lin CY, Wu MS (2011) p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant 26:938–947CrossRefGoogle Scholar
  6. 6.
    Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G (2014) The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 25:1897–1907CrossRefGoogle Scholar
  7. 7.
    Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81:949–954CrossRefGoogle Scholar
  8. 8.
    Liabeuf S, Barreto DV, Barreto FC, Meert N, Glorieux G, Schepers E, Temmar M, Choukroun G, Vanholder R, Massy ZA, Grp EW (2010) Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant 25:1183–1191CrossRefGoogle Scholar
  9. 9.
    Lin CJ, Wu CJ, Pan CF, Chen YC, Sun FJ, Chen HH (2010) Serum protein-bound uraemic toxins and clinical outcomes in haemodialysis patients. Nephrol Dial Transplant 25:3693–3700CrossRefGoogle Scholar
  10. 10.
    Wu IW, Hsu KH, Hsu HJ, Lee CC, Sun CY, Tsai CJ, Wu MS (2012) Serum free p-cresyl sulfate levels predict cardiovascular and all-cause mortality in elderly hemodialysis patients—a prospective cohort study. Nephrol Dial Transplant 27:1169–1175CrossRefGoogle Scholar
  11. 11.
    Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA, European Uremic Toxin Work Group (2009) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4:1551–1558CrossRefGoogle Scholar
  12. 12.
    Goto S, Fujii H, Hamada Y, Yoshiya K, Fukagawa M (2010) Association between indoxyl sulfate and skeletal resistance in hemodialysis patients. Ther Apher Dial 14:417–423CrossRefGoogle Scholar
  13. 13.
    Poesen R, Viaene L, Verbeke K, Claes K, Bammens B, Sprangers B, Naesens M, Vanrenterghem Y, Kuypers D, Evenepoel P, Meijers B (2013) Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD. Clin J Am Soc Nephrol 8:1508–1514CrossRefGoogle Scholar
  14. 14.
    Schepers E, Glorieux G, Vanholder R (2010) The gut: the forgotten organ in uremia? Blood Purif 29:130–136CrossRefGoogle Scholar
  15. 15.
    Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS (2016) Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis 67:483–498CrossRefGoogle Scholar
  16. 16.
    Poesen R, Meijers B, Evenepoel P (2013) The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 26:323–332CrossRefGoogle Scholar
  17. 17.
    Gryp T, Vanholder R, Vaneechoutte M, Glorieux G (2017) p-Cresyl Sulfate. Toxins.  https://doi.org/10.3390/toxins9020052 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Leong SC, Sirich TL (2016) Indoxyl sulfate—review of toxicity and therapeutic strategies. Toxins.  https://doi.org/10.3390/toxins8120358 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    American college of chest physicians/society of critical care medicine consensus conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874Google Scholar
  20. 20.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810CrossRefGoogle Scholar
  21. 21.
    Vanmassenhove J, Lameire N, Dhondt A, Vanholder R, Van Biesen W (2015) Prognostic robustness of serum creatinine based AKI definitions in patients with sepsis: a prospective cohort study. BMC Nephrol 16:112CrossRefGoogle Scholar
  22. 22.
    Deltombe O, Dhondt A, Van Biesen W, Glorieux G, Eloot S (2017) Effect of sample temperature, pH, and matrix on the percentage protein binding of protein-bound uraemic toxins. Anal Methods 9:1935–1940CrossRefGoogle Scholar
  23. 23.
    Ogden TL (2010) Handling results below the level of detection. Ann Occup Hyg 54:255–256PubMedGoogle Scholar
  24. 24.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Workgroup (2004) Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212CrossRefGoogle Scholar
  25. 25.
    Macedo E, Malhotra R, Claure-Del Granado R, Fedullo P, Mehta RL (2011) Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol Dial Transplant 26:509–515CrossRefGoogle Scholar
  26. 26.
    Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R (2013) Acute kidney injury: an increasing global concern. Lancet 382:170–179CrossRefGoogle Scholar
  27. 27.
    Eloot S, Schepers E, Barreto DV, Barreto FC, Liabeuf S, Van Biesen W, Verbeke F, Glorieux G, Choukroun G, Massy Z, Vanholder R (2011) Estimated glomerular filtration rate is a poor predictor of concentration for a broad range of uremic toxins. Clin J Am Soc Nephrol 6:1266–1273CrossRefGoogle Scholar
  28. 28.
    Snauwaert E, Van Biesen W, Raes A, Holvoet E, Glorieux G, Van Hoeck K, Van Dyck M, Godefroid N, Vanholder R, Roels S, Vande Walle J, Eloot S (2018) Accumulation of uraemic toxins is reflected only partially by estimated GFR in paediatric patients with chronic kidney disease. Pediatr Nephrol 33:315–323CrossRefGoogle Scholar
  29. 29.
    Becattini S, Taur Y, Pamer EG (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22:458–478CrossRefGoogle Scholar
  30. 30.
    Nazzal L, Roberts J, Singh P, Jhawar S, Matalon A, Gao Z, Holzman R, Liebes L, Blaser MJ, Lowenstein J (2017) Microbiome perturbation by oral vancomycin reduces plasma concentration of two gut-derived uremic solutes, indoxyl sulfate and p-cresyl sulfate, in end-stage renal disease. Nephrol Dial Transplant 32:1809–1817CrossRefGoogle Scholar
  31. 31.
    Poesen R, Augustijns BB,P, Evenepoel P, Meijers B (2014) FR-PO282 abstract supplement american society of nephrology congress. J Am Soc NephrolGoogle Scholar
  32. 32.
    Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, Zhu W, Sporrer D, Hehlgans T, Kreutz M, Holler B, Wolff D, Edinger M, Andreesen R, Levine JE, Ferrara JL, Gessner A, Spang R, Oefner PJ (2014) Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biol Blood Marrow Transplant 20:640–645CrossRefGoogle Scholar
  33. 33.
    Eloot S, Van Biesen W, Roels S, Delrue W, Schepers E, Dhondt A, Vanholder R, Glorieux G (2017) Spontaneous variability of pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients. PLoS ONE 12:e0186010CrossRefGoogle Scholar
  34. 34.
    Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M, Noguchi T, Kadowaki D, Ishima Y, Kotani S, Nakajima M, Kataoka K, Kim-Mitsuyama S, Tanaka M, Fukagawa M, Otagiri M, Maruyama T (2013) p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int 83:582–592CrossRefGoogle Scholar
  35. 35.
    Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, Brunet P (2007) The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5:1302–1308CrossRefGoogle Scholar
  36. 36.
    Tanaka T (2017) A mechanistic link between renal ischemia and fibrosis. Med Mol Morphol 50:1–8CrossRefGoogle Scholar
  37. 37.
    Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15:1–12CrossRefGoogle Scholar
  38. 38.
    Palm F, Nangaku M, Fasching A, Tanaka T, Nordquist L, Hansell P, Kawakami T, Nishijima F, Fujita T (2010) Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress. Am J Physiol Renal Physiol 299:F380–F386CrossRefGoogle Scholar
  39. 39.
    Vanmassenhove J, Vanholder R, Lameire N (2018) Points of concern in post acute kidney injury management. Nephron 138:92–103CrossRefGoogle Scholar
  40. 40.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305CrossRefGoogle Scholar
  41. 41.
    Chen S (2013) Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol 24:877–888CrossRefGoogle Scholar
  42. 42.
    Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL, Program to Improve Care in Acute Renal Disease Study (2010) Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care 14:R82CrossRefGoogle Scholar
  43. 43.
    Masereeuw R, Mutsaers HAM, Toyohara T, Abe T, Jhawar S, Sweet DH, Lowenstein J (2014) The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol 34:191–208CrossRefGoogle Scholar
  44. 44.
    Sekine T, Miyazaki H, Endou H (2006) Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol 290:F251–F261CrossRefGoogle Scholar
  45. 45.
    Schefold JC, Bierbrauer J, Weber-Carstens S (2010) Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle 1:147–157CrossRefGoogle Scholar
  46. 46.
    Clark WR, Mueller BA, Kraus MA, Macias WL (1998) Quantification of creatinine kinetic parameters in patients with acute renal failure. Kidney Int 54:554–560CrossRefGoogle Scholar
  47. 47.
    Siew ED, Peterson JF, Eden SK, Hung AM, Speroff T, Ikizler TA, Matheny ME (2012) Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol 23:305–312CrossRefGoogle Scholar
  48. 48.
    Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W (2013) Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care 17:R234CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Nephrology DivisionGhent University HospitalGhentBelgium
  2. 2.Nephrology Division, Ambroise Paré HospitalAPHP, and Paris Ile de France West (UVSQ) UniversityBoulogne BillancourtFrance
  3. 3.Inserm U1018 Team5UVSQ, University ParisSaclay VillejuifFrance
  4. 4.Division of Clinical PharmacologyAmiens University HospitalAmiensFrance

Personalised recommendations