International Urology and Nephrology

, Volume 51, Issue 1, pp 93–100 | Cite as

The association between autosomal dominant polycystic kidney disease and cancer

  • Ke Sun
  • Dechao Xu
  • Changlin MeiEmail author
Nephrology - Review


Autosomal dominant polycystic kidney disease (ADPKD) is considered as a tumor-like disease because there are many biological similarities between ADPKD and cancer. However, the commonalities between them are provocative, particularly under the conditions of recent clinical studies. In this paper, we review clinical studies about the association between cancer and ADPKD, and compare the biological characteristics between them, with focusing on cell proliferation, differentiation, migration, apoptosis, and polarity. With detailed literature reviewing, we believe that ADPKD patients have a higher risk of tumorigenesis and thus highly recommend being aware of tumorigenesis during follow-up in patients with ADPKD.


ADPKD Cancer Association 



This work was supported by National Natural Science Foundation of China (81700579 and 81670612, to CM), the Three-year Project of Action for Shanghai Public Health System (GWIV-18, to CM), and the National Key Research and Development Program of China (2016YFC0901502).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Torres VE, Harris PC (2009) Autosomal dominant polycystic kidney disease: the last 3 years. Kidney Int 76(2):149–168Google Scholar
  2. 2.
    Patel V, Chowdhury R, Igarashi P (2009) Advances in the pathogenesis and treatment of polycystic kidney disease. Curr Opin Nephrol Hypertens 18(2):99–106Google Scholar
  3. 3.
    Grantham JJ (2008) Clinical practice. Autosomal dominant polycystic kidney disease. N Engl J Med 359(14):1477–1485Google Scholar
  4. 4.
    Steinman TI (2012) Polycystic kidney disease: a 2011 update. Curr Opin Nephrol Hypertens 21(2):189–194Google Scholar
  5. 5.
    Sutters M, Germino GG (2003) Autosomal dominant polycystic kidney disease: molecular genetics and pathophysiology. J Lab Clin Med 141(2):91–101Google Scholar
  6. 6.
    Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet 369(9569):1287–1301Google Scholar
  7. 7.
    Yao Q, Wu M, Zhou J, Zhou M, Chen D, Fu L et al (2017) Treatment of Persistent Gross Hematuria with Tranexamic Acid in Autosomal Dominant Polycystic Kidney Disease. Kidney Blood Press Res 42(1):156–164Google Scholar
  8. 8.
    Antignac C, Calvet JP, Germino GG, Grantham JJ, Guay-Woodford LM, Harris PC et al (2015) The Future of Polycystic Kidney Disease Research–As Seen By the 12 Kaplan Awardees. J Am Soc Nephrol 26(9):2081–2095Google Scholar
  9. 9.
    Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21(2):107–123Google Scholar
  10. 10.
    Ding Y, Chen L, Deng FM, Melamed J, Fan R, Bonsib S et al (2013) Localized cystic disease of the kidney: distinction from cystic neoplasms and hereditary polycystic diseases. Am J Surg Pathol 37(4):506–513Google Scholar
  11. 11.
    Sahoo N, Patra S, Senapati S, Mishra TS (2017) Multicentric papillary and chromophobe renal cell carcinomas in a patient with autosomal dominant polycystic kidney disease: Report of a rare case. Indian J Pathol Microbiol 60(3):405–408Google Scholar
  12. 12.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674Google Scholar
  13. 13.
    Ibrahim S (2007) Increased apoptosis and proliferative capacity are early events in cyst formation in autosomal-dominant, polycystic kidney disease. ScientificWorld Journal 7:1757–1767Google Scholar
  14. 14.
    Wander SA, Hennessy BT, Slingerland JM (2011) Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 121(4):1231–1241Google Scholar
  15. 15.
    Zaytseva YY, Valentino JD, Gulhati P, Evers BM (2012) mTOR inhibitors in cancer therapy. Cancer Lett 319(1):1–7Google Scholar
  16. 16.
    Chen G, Chen H, Wang C, Peng Y, Sun L, Liu H et al (2012) Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS One 7(3):e33626Google Scholar
  17. 17.
    Novalic Z, van der Wal AM, Leonhard WN, Koehl G, Breuning MH, Geissler EK et al (2012) Dose-dependent effects of sirolimus on mTOR signaling and polycystic kidney disease. J Am Soc Nephrol 23(5):842–853Google Scholar
  18. 18.
    Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC et al (2003) Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63(6):1983–1994Google Scholar
  19. 19.
    Harris PC, Torres VE (2014) Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 124(6):2315–2324Google Scholar
  20. 20.
    Torres VE, Harris PC (2014) Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 25(1):18–32Google Scholar
  21. 21.
    Blair HA, Keating GM. Tolvaptan (2015) A review in autosomal dominant polycystic kidney disease. Drugs 75(15):1797–1806Google Scholar
  22. 22.
    Wang S, Zhang Z, Qian W, Ji D, Wang Q, Ji B et al (2018) Angiogenesis and vasculogenic mimicry are inhibited by 8-Br-cAMP through activation of the cAMP/PKA pathway in colorectal cancer. Onco Targets Ther 11:3765–3774Google Scholar
  23. 23.
    Baroni MD, Colombo S, Martegani E (2018) Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence. Microb Cell 5(7):344–356Google Scholar
  24. 24.
    Dong H, Claffey KP, Brocke S, Epstein PM (2015) Inhibition of breast cancer cell migration by activation of cAMP signaling. Breast Cancer Res Treat 152(1):17–28Google Scholar
  25. 25.
    Schwensen KG, Burgess JS, Graf NS, Alexander SI, Harris DC, Phillips JK et al (2011) Early cyst growth is associated with the increased nuclear expression of cyclin D1/Rb protein in an autosomal-recessive polycystic kidney disease rat model. Nephron Exp Nephrol 117(4):e93–e103Google Scholar
  26. 26.
    Kim S, Nie H, Nesin V, Tran U, Outeda P, Bai CX et al (2016) The polycystin complex mediates Wnt/Ca(2+) signalling. Nat Cell Biol 18(7):752–764Google Scholar
  27. 27.
    Happe H, Leonhard WN, van der Wal A, van de Water B, Lantinga-van Leeuwen IS, Breuning MH et al (2009) Toxic tubular injury in kidneys from Pkd1-deletion mice accelerates cystogenesis accompanied by dysregulated planar cell polarity and canonical Wnt signaling pathways. Hum Mol Genet 18(14):2532–2542Google Scholar
  28. 28.
    Wilson SJ, Amsler K, Hyink DP, Li X, Lu W, Zhou J et al (2006) Inhibition of HER-2(neu/ErbB2) restores normal function and structure to polycystic kidney disease (PKD) epithelia. Biochim Biophys Acta 1762(7):647–655Google Scholar
  29. 29.
    Nakanishi K, Gattone VH II, Sweeney WE, Avner ED (2001) Renal dysfunction but not cystic change is ameliorated by neonatal epidermal growth factor in bpk mice. Pediatr Nephrol 16(1):45–50Google Scholar
  30. 30.
    Yamaguchi T, Reif GA, Calvet JP, Wallace DP (2010) Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol 299(5):F944–F951Google Scholar
  31. 31.
    Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S et al (2000) cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int 57(4):1460–1471Google Scholar
  32. 32.
    Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB (2001) Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 90(2–3):105–156Google Scholar
  33. 33.
    Jogi A, Vaapil M, Johansson M, Pahlman S (2012) Cancer cell differentiation heterogeneity and aggressive behavior in solid tumors. Ups J Med Sci 117(2):217–224Google Scholar
  34. 34.
    Wachi T, Yoshida N, Funae Y, Ueno M, Germino GG, Hirotsune S et al (2012) Progesterone induced mesenchymal differentiation and rescued cystic dilation of renal tubules of Pkd1(–/–) mice. Biochem Biophys Res Commun 425(2):212–218Google Scholar
  35. 35.
    Chauvet V, Tian X, Husson H, Grimm DH, Wang T, Hiesberger T et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114(10):1433–1443Google Scholar
  36. 36.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33(2):129–137Google Scholar
  37. 37.
    Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26(8):844–856Google Scholar
  38. 38.
    Torres VE, Sweeney WE Jr, Wang X, Qian Q, Harris PC, Frost P et al (2003) EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int 64(5):1573–1579Google Scholar
  39. 39.
    Zheleznova NN, Wilson PD, Staruschenko A (2011) Epidermal growth factor-mediated proliferation and sodium transport in normal and PKD epithelial cells. Biochim Biophys Acta 1812(10):1301–1313Google Scholar
  40. 40.
    Li S, Xu W, Xing Z, Qian J, Chen L, Gu R et al (2017) A Conditional Knockout Mouse Model Reveals a Critical Role of PKD1 in Osteoblast Differentiation and Bone Development. Sci Rep 7:40505Google Scholar
  41. 41.
    Canel M, Serrels A, Frame MC, Brunton VG (2013) E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 126(Pt 2):393–401Google Scholar
  42. 42.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687Google Scholar
  43. 43.
    Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512–522Google Scholar
  44. 44.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol.
  45. 45.
    Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N et al (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5(5):1159–1168Google Scholar
  46. 46.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556Google Scholar
  47. 47.
    Chen T, Guo J, Yang M, Zhu X, Cao X (2011) Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. J Immunol 186(4):2219–2228Google Scholar
  48. 48.
    Birchmeier W, Behrens J (1994) Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198(1):11–26Google Scholar
  49. 49.
    Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13(9):2384–2398Google Scholar
  50. 50.
    Bhunia AK, Piontek K, Boletta A, Liu L, Qian F, Xu PN et al (2002) PKD1 induces p21(waf1) and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109(2):157–168Google Scholar
  51. 51.
    Markoff A, Bogdanova N, Knop M, Ruffer C, Kenis H, Lux P et al (2007) Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J Mol Biol 369(4):954–966Google Scholar
  52. 52.
    Charron AJ, Nakamura S, Bacallao R, Wandinger-Ness A (2000) Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J Cell Biol 149(1):111–124Google Scholar
  53. 53.
    Margadant C, Monsuur HN, Norman JC, Sonnenberg A (2011) Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 23(5):607–614Google Scholar
  54. 54.
    Israeli S, Amsler K, Zheleznova N, Wilson PD (2010) Abnormalities in focal adhesion complex formation, regulation, and function in human autosomal recessive polycystic kidney disease epithelial cells. Am J Physiol Cell Physiol 298(4):C831–C846Google Scholar
  55. 55.
    Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120(Pt 1):137–148Google Scholar
  56. 56.
    Zimerman B, Volberg T, Geiger B (2004) Early molecular events in the assembly of the focal adhesion-stress fiber complex during fibroblast spreading. Cell Motil Cytoskeleton 58(3):143–159Google Scholar
  57. 57.
    Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE et al (2002) The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 22(3):901–915Google Scholar
  58. 58.
    Hsia DA, Lim ST, Bernard-Trifilo JA, Mitra SK, Tanaka S, den Hertog J et al (2005) Integrin alpha4beta1 promotes focal adhesion kinase-independent cell motility via alpha4 cytoplasmic domain-specific activation of c-Src. Mol Cell Biol 25(21):9700–9712Google Scholar
  59. 59.
    Polgar K, Burrow CR, Hyink DP, Fernandez H, Thornton K, Li X et al (2005) Disruption of polycystin-1 function interferes with branching morphogenesis of the ureteric bud in developing mouse kidneys. Dev Biol 286(1):16–30Google Scholar
  60. 60.
    Wilson PD (2004) Polycystic kidney disease. N Engl J Med 350(2):151–164Google Scholar
  61. 61.
    Liu H, Radisky DC, Yang D, Xu R, Radisky ES, Bissell MJ et al (2012) MYC suppresses cancer metastasis by direct transcriptional silencing of alphav and beta3 integrin subunits. Nat Cell Biol 14(6):567–574Google Scholar
  62. 62.
    Boca M, D’Amato L, Distefano G, Polishchuk RS, Germino GG, Boletta A (2007) Polycystin-1 induces cell migration by regulating phosphatidylinositol 3-kinase-dependent cytoskeletal rearrangements and GSK3beta-dependent cell cell mechanical adhesion. Mol Biol Cell 18(10):4050–4061Google Scholar
  63. 63.
    Xu JX, Lu TS, Li S, Wu Y, Ding L, Denker BM et al (2015) Polycystin-1 and Galpha12 regulate the cleavage of E-cadherin in kidney epithelial cells. Physiol Genomics 47(2):24–32Google Scholar
  64. 64.
    Yao G, Su X, Nguyen V, Roberts K, Li X, Takakura A et al (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-Wasp complex. Hum Mol Genet 23(10):2769–2779Google Scholar
  65. 65.
    Hammerman MR (1998) Renal programmed cell death and the treatment of renal disease. Curr Opin Nephrol Hypertens 7(1):1–3Google Scholar
  66. 66.
    Savill J (1994) Apoptosis and the kidney. J Am Soc Nephrol 5(1):12–21Google Scholar
  67. 67.
    Sorenson CM (1998) Life, death and kidneys: regulation of renal programmed cell death. Curr Opin Nephrol Hypertens 7(1):5–12Google Scholar
  68. 68.
    Philchenkov AA, Balcer-Kubiczek EK (2016) Molecular markers of apoptosis in cancer patients exposed to ionizing radiation: the post-Chornobyl view. Exp Oncol 38(4):224–237Google Scholar
  69. 69.
    Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284Google Scholar
  70. 70.
    Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT et al (2015) Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 35(Suppl):S78–S103Google Scholar
  71. 71.
    Lanoix J, D’Agati V, Szabolcs M, Trudel M (1996) Dysregulation of cellular proliferation and apoptosis mediates human autosomal dominant polycystic kidney disease (ADPKD). Oncogene 13(6):1153–1160Google Scholar
  72. 72.
    Woo D (1995) Apoptosis and loss of renal tissue in polycystic kidney diseases. N Engl J Med 333(1):18–25Google Scholar
  73. 73.
    Zhou XJ, Kukes G (1998) Pathogenesis of autosomal dominant polycystic kidney disease: role of apoptosis. Diagn Mol Pathol 7(2):65–68Google Scholar
  74. 74.
    Fan LX, Zhou X, Sweeney WE Jr, Wallace DP, Avner ED, Grantham JJ et al (2013) Smac-mimetic-induced epithelial cell death reduces the growth of renal cysts. J Am Soc Nephrol 24(12):2010–2022Google Scholar
  75. 75.
    Duplomb L, Droin N, Bouchot O, Thauvin-Robinet C, Bruel AL, Thevenon J et al (2017) A constitutive BCL2 down-regulation aggravates the phenotype of PKD1-mutant-induced polycystic kidney disease. Hum Mol Genet 26(23):4680–4688Google Scholar
  76. 76.
    Wilson PD (2011) Apico-basal polarity in polycystic kidney disease epithelia. Biochim Biophys Acta 1812(10):1239–1248Google Scholar
  77. 77.
    Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5):609–622Google Scholar
  78. 78.
    Karp CM, Tan TT, Mathew R, Nelson D, Mukherjee C, Degenhardt K et al (2008) Role of the polarity determinant crumbs in suppressing mammalian epithelial tumor progression. Cancer Res 68(11):4105–4115Google Scholar
  79. 79.
    Laprise P, Viel A, Rivard N (2004) Human homolog of disc-large is required for adherens junction assembly and differentiation of human intestinal epithelial cells. J Biol Chem 279(11):10157–10166Google Scholar
  80. 80.
    Weide T, Vollenbroker B, Schulze U, Djuric I, Edeling M, Bonse J et al (2017) Pals1 Haploinsufficiency Results in Proteinuria and Cyst Formation. J Am Soc Nephrol 28(7):2093–2107Google Scholar
  81. 81.
    Nechiporuk T, Fernandez TE, Vasioukhin V (2007) Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev Cell 13(3):338–350Google Scholar
  82. 82.
    Xu D, Lv J, He L, Fu L, Hu R, Cao Y et al. Scribble influences cyst formation in autosomal-dominant polycystic kidney disease by regulating Hippo signaling pathway. FASEB J. 2018:fj201701376RRGoogle Scholar
  83. 83.
    Walters WBW. Surgical aspects of polycystic kidney. Surg Obstet Gynecol. 1934:647–50Google Scholar
  84. 84.
    Keith DS, Torres VE, King BF, Zincki H, Farrow GM (1994) Renal cell carcinoma in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 4(9):1661–1669Google Scholar
  85. 85.
    Hajj P, Ferlicot S, Massoud W, Awad A, Hammoudi Y, Charpentier B et al (2009) Prevalence of renal cell carcinoma in patients with autosomal dominant polycystic kidney disease and chronic renal failure. Urology 74(3):631–634Google Scholar
  86. 86.
    Denton MD, Magee CC, Ovuworie C, Mauiyyedi S, Pascual M, Colvin RB et al (2002) Prevalence of renal cell carcinoma in patients with ESRD pre-transplantation: a pathologic analysis. Kidney Int 61(6):2201–2209Google Scholar
  87. 87.
    Wetmore JB, Calvet JP, Yu AS, Lynch CF, Wang CJ, Kasiske BL et al (2014) Polycystic kidney disease and cancer after renal transplantation. J Am Soc Nephrol 25(10):2335–2341Google Scholar
  88. 88.
    Yu T-M, Chuang Y-W, Yu M-C, Chen C-H, Yang C-K, Huang S-T et al (2016) Risk of cancer in patients with polycystic kidney disease: a propensity-score matched analysis of a nationwide, population-based cohort study. The Lancet Oncology 17(10):1419–1425Google Scholar
  89. 89.
    De Nardo D, De Nardo CM, Latz E (2014) New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am J Pathol 184(1):42–54Google Scholar
  90. 90.
    Chang A, Ko K, Clark MR (2014) The emerging role of the inflammasome in kidney diseases. Curr Opin Nephrol Hypertens 23(3):204–210Google Scholar
  91. 91.
    Takiar V, Nishio S, Seo-Mayer P, King JD Jr, Li H, Zhang L et al (2011) Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci U S A 108(6):2462–2467Google Scholar
  92. 92.
    Pernicova I, Korbonits M (2014) Metformin–mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol 10(3):143–156Google Scholar
  93. 93.
    Yu TM, Chuang YW, Yu MC, Chen CH, Yang CK, Huang ST et al (2016) Risk of cancer in patients with polycystic kidney disease: a propensity-score matched analysis of a nationwide, population-based cohort study. Lancet Oncol 17(10):1419–1425Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Nephrology, Kidney Institute, Changzheng HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations