International Urology and Nephrology

, Volume 50, Issue 12, pp 2207–2220 | Cite as

The value of the Brazilian açai fruit as a therapeutic nutritional strategy for chronic kidney disease patients

  • Isabelle C. V. S. MartinsEmail author
  • Natália A. Borges
  • Peter Stenvinkel
  • Bengt Lindholm
  • Hervé Rogez
  • Maria C. N. Pinheiro
  • José L. M. Nascimento
  • Denise Mafra
Nephrology - Review


Açai (Euterpe oleracea Mart.) fruit from the Amazon region in Brazil contains bioactive compounds such as α-tocopherol, anthocyanins (cyanidin 3-glycoside and cyanidin 3-rutinoside), and other flavonoids with antioxidant and anti-inflammatory properties. Moreover, the prebiotic activity of anthocyanins in modulating the composition of gut microbiota has emerged as an additional mechanism by which anthocyanins exert health-promoting effects. Açai consumption may be a nutritional therapeutic strategy for chronic kidney disease (CKD) patients since these patients present with oxidative stress, inflammation, and dysbiosis. However, the ability of açai to modulate these conditions has not been studied in CKD, and this review presents recent information about açai and its possible therapeutic effects in CKD.


Açai Chronic kidney disease Inflammation Bioactive compounds Anthocyanins 



Conselho Nacional de Pesquisa (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) supported the research by Denise Mafra. Baxter Novum is the result of a grant from Baxter Healthcare to Karolinska Institutet.

Compliance with ethical standards

Conflict of interest

Bengt Lindholm is employed by Baxter Healthcare. The other authors do not declare any potential conflicts of interest.


  1. 1.
    Heinrich M, Dhanji T, Casselman I (2011) Açai (Euterpe oleracea Mart.): a phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4:10–21Google Scholar
  2. 2.
    Torres T, Farah A (2017) Coffee, maté, açai and beans are the main contributors to the antioxidant capacity of Brazilian´s diet. Eur J Nutr 56(4):1523–1533PubMedGoogle Scholar
  3. 3.
    Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM (2002) The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62(5):1524–1538PubMedGoogle Scholar
  4. 4.
    Kuo KL, Hung SC, Wei YH, Tarng DC (2008) Intravenous iron exacerbates oxidative DNA damage in peripheral blood lymphocytes in chronic hemodialysis patients. J Am Soc Nephrol 19(9):1817–1826PubMedPubMedCentralGoogle Scholar
  5. 5.
    Costa-Hong V, Bortolotto LA, Jorgetti V et al (2009) Oxidative stress and endothelial dysfunction in chronic kidney disease. Arq Bras Cardiol 92(5):381–386PubMedGoogle Scholar
  6. 6.
    Mekki K, Taleb W, Bouzidi N, Kaddous A, Bouchenak M (2010) Effect of hemodialysis and peritoneal dialysis on redox status in chronic renal failure patients: a comparative study. Lipids Health Dis 9:93PubMedPubMedCentralGoogle Scholar
  7. 7.
    Rangel-López A, Paniagua-Medina ME, Urbán-Reyes M et al (2013) Genetic damage in patients with chronic kidney disease, peritoneal dialysis and haemodialysis: a comparative study. Mutagenesis 28(2):219–225PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pedruzzi LM, Cardozo LF, Daleprane JB et al (2015) Systemic inflammation and oxidative stress in hemodialysis patients are associated with down-regulation of Nrf2. J Nephrol 28(4):495–501PubMedGoogle Scholar
  9. 9.
    Zargari M, Sedighi O (2015) Influence of hemodialysis on lipid peroxidation, enzymatic and non-enzymatic antioxidant capacity in chronic renal failure patients. Nephrourol Mon 7(4):e28526PubMedPubMedCentralGoogle Scholar
  10. 10.
    Jun M, Zhu B, Tonelli M et al (2012) Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol 60(20):2061–2071PubMedGoogle Scholar
  11. 11.
    Dahwa R, Fassett RG, Wang Z, Briskey D, Mallard AR, Coombes JS (2014) Variability of oxidative stress biomarkers in hemodialysis patients. Biomarkers 19(2):154–158PubMedGoogle Scholar
  12. 12.
    Esgalhado M, Stenvinkel P, Mafra D (2017) Nonpharmacologic strategies to modulate nuclear factor erythroid 2-related factor 2 pathway in chronic kidney disease. J Ren Nutr 27(4):282–291PubMedGoogle Scholar
  13. 13.
    Bichara CMG, Rogez H (2012) Açai (Euterpe oleracea Mart.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits: açai to citrus, 7th edn. Woodhead Publishing, Cambridge, pp 1–26Google Scholar
  14. 14.
    Dayem AA, Choi HY, Yang G-Mo, Kim K, Saha SK, Cho SG (2016) The anti-cancer effect of polyphenols against breast cancer and cancer stem cells: molecular mechanisms. Nutrients 8(9):581Google Scholar
  15. 15.
    Wallace TC, Giusti MM (2014) Anthocyanins in health and disease. Taylor & Francis Group, Boca RatonGoogle Scholar
  16. 16.
    Chinese Nutrition Society (2013) Chinese DRIs handbook. Standards Press of China, BeijingGoogle Scholar
  17. 17.
    Fernandes I, Marques F, Freitas V de, Mateus N (2013) Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chem 141(3):2923–2933PubMedGoogle Scholar
  18. 18.
    Czank C, Cassidy A, Zhang Q et al (2013) Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: a 13C-tracer study. Am J Clin Nutr 97:995–1003PubMedGoogle Scholar
  19. 19.
    Fang J (2014) Bioavailability of anthocyanins. Drug Metab Rev 46(4):508–520Google Scholar
  20. 20.
    Tsuda T (2016) Recent progress in anti-obesity and anti-diabetes effect of berries. Antioxidants (Basel) 5(2):13Google Scholar
  21. 21.
    Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57(15):6485–6501PubMedGoogle Scholar
  22. 22.
    Blum HE (2017) The human microbiome. Adv Med Sci 62(2):414–420PubMedGoogle Scholar
  23. 23.
    Tanca A, Abbondio M, Palomba A, Fraumene C, Manghina V, Cucca F, Fiorillo E, Uzzau S (2017) Potential and active functions in the gut microbiota of a healthy human cohort. Microbiome 5(1):79PubMedPubMedCentralGoogle Scholar
  24. 24.
    Etxeberria U, Fernández-Quintela A, Milagro FI, Aguirre L, Martínez JA, Portillo MP (2013) Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J Agric Food Chem 61(40):9517–9533PubMedGoogle Scholar
  25. 25.
    Esposito D, Damsud T, Wilson M et al (2015) Black currant anthocyanins attenuate weight gain and improve glucose metabolism in diet-induced obese mice with intact, but not disrupted, gut microbiome. J Agric Food Chem 63:6172–6180PubMedGoogle Scholar
  26. 26.
    Overall J, Bonney SA, Wilson M et al (2017) Metabolic effects of berries with structurally diverse anthocyanins. Int J Mol Sci 18(2)PubMedCentralGoogle Scholar
  27. 27.
    Jamar G, Estadella D, Pisani LP (2017) Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors 43(4):507–516PubMedGoogle Scholar
  28. 28.
    Sadowska-Krępa E, Kłapcińska B, Podgórski T, Szade B, Tyl K, Hadzik A (2015) Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport 32(2):161–168PubMedPubMedCentralGoogle Scholar
  29. 29.
    Smeriglio A, Barreca D, Bellocco E, Trombetta D (2016) Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res 30(8):1265–1286PubMedGoogle Scholar
  30. 30.
    Cordeiro VCS, Carvalho CRML., Bem GF de et al (2007) Euterpe oleracea Mart. extract prevents vascular remodeling and endothelial dysfunction in spontaneously hypertensive rats. Int J Appl Res Nat Prod 8(3):6–16Google Scholar
  31. 31.
    Souza MO, Silva M, Silva ME, Oliveira RP, Pedrosa ML (2010) Diet supplementation with açai (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition 26(7–8):804–810PubMedGoogle Scholar
  32. 32.
    El Morsy EM, Ahmed MA, Ahmed AA (2015) Attenuation of renal ischemia/reperfusion injury by açai extract preconditioning in a rat model. Life Sci 5(123):35–42Google Scholar
  33. 33.
    Guerra JFdaC, Maciel PS, Abreu ICME. de et al (2015) Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods 14:192–202Google Scholar
  34. 34.
    Oyama LM, Silva FP, Carnier J et al (2016) Juçara pulp supplementation improves glucose tolerance in mice. Diabetol Metab Syndr 22(8):8Google Scholar
  35. 35.
    Fairlie-Jones L, Davison K, Fromentin E, Hill AM (2017) The effect of anthocyanin-rich foods or extracts on vascular function in adults: a systematic review and meta-analysis of randomised controlled trials. Nutrients 20(8):9Google Scholar
  36. 36.
    Heyman L, Axling U, Blanco N, Sterner O, Holm C, Berger K (2014) Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J Nutr Metab 403041Google Scholar
  37. 37.
    Heyman-Lindén L, Kotowska D, Sand E et al (2016) Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr Res 60:29993PubMedGoogle Scholar
  38. 38.
    Frank T, Netzel M, Strass G, Bitsch R, Bitsch I (2003) Can Bioavailability of anthocyanidin-3-glucosides following consumption of red wine and red grape juice. J Physiol Pharmacol 81:423–435Google Scholar
  39. 39.
    Speciale A, Canali R, Chirafisi J, Saija A, Virgili F, Cimino F (2010) Cyanidin-3-O-glucoside protection against TNF-r-induced endothelial dysfunction: involvement of nuclear factor-KB signaling. J Agric Food Chem 58:12048–12054PubMedGoogle Scholar
  40. 40.
    Ramyaa P, Krishnaswamy R, Padmaa VV (2014) Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells: up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta 1840(1):681–692PubMedGoogle Scholar
  41. 41.
    Ferrari D, Speciale A, Mariateresa C, Fratantonio D, Molonia MS, Ranaldi G, Saija A, Cimino F (2016) Cyanidin-3-O-glucoside inhibits NF-κB signalling in intestinal epithelial cells exposed to TNF-κ and exerts protective effects via Nrf2 pathway activation. Toxicol Lett 15(264):51–58Google Scholar
  42. 42.
    Ma MM, Li Y, Liu XY, Zhu WW, Ren X, Kong GQ, Huang X, Wang LP, Luo LQ, Wang XZ (2015) Cyanidin-3-O-glucoside ameliorates lipopolysaccharide-induced injury both in vivo and in vitro suppression of NF-κB and MAPK pathways. Inflammation 38(4):1669–1682PubMedGoogle Scholar
  43. 43.
    Xie X, Zhao R, Garry X, Shen J (2012) Influence of delphinidin-3-glucoside on oxidized low-density lipoprotein-induced oxidative stress and apoptosis in cultured endothelial cells. Agric Food Chem 60:1850–1856Google Scholar
  44. 44.
    Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Can WD (2012) Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. J Physiol Pharmacol 90:1345–1353Google Scholar
  45. 45.
    Abd El-Aziz TA, Mohamed RH, Pasha HF, Abdel-Aziz HR (2012) Catechin protects against oxidative stress and inflammatory-mediated cardiotoxicity in adriamycin-treated rats. Clin Exp Med 12:233–240PubMedGoogle Scholar
  46. 46.
    Chander V, Chopra K (2005) Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. J Vasc Surg 42(6):1198–1205PubMedGoogle Scholar
  47. 47.
    Dianat M, Radmanesh E, Badavi MSE, Goudarzi G (2016) Disturbance effects of PM10 on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia–reperfusion injury in isolated rat heart: protective role of vanillic acid. Environ Sci Pollut Res 23(6):5154–5165Google Scholar
  48. 48.
    Tanigawa T, Kanazawa S, Ichibori R, Fujiwara T, Magome T, Shingaki K, Miyata S (2014) (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med 8(14):133Google Scholar
  49. 49.
    Arumugam S, Thandavarayan RA, Arozal W, Sari FR, Giridharan VV, Soetikno V, Palaniyandi SS (2012) Quercetin offers cardioprotection against progression of experimental autoimmune myocarditis by suppression of oxidative and endoplasmic reticulum stress via endothelin-1/MAPK signaling. Free Radic Res 46(2):154–163PubMedGoogle Scholar
  50. 50.
    Lee DE, Chung MY, Lim TG, Huh WB, Lee HJ, Lee KW (2013) Quercetin suppresses intracellular ROS formation, MMP activation, and cell motility in human fibrosarcoma cells. Food Sci 78(9):H1464-9Google Scholar
  51. 51.
    Lin W-Chieh, Yu-Fen P, Chien-Wei H (2015) Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways. Iran J Basic Med Sci 18:478–484PubMedPubMedCentralGoogle Scholar
  52. 52.
    Palsamy P, Subramanian S (2011) Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 1812(7):719–731PubMedGoogle Scholar
  53. 53.
    Li J, Li L, Wanga S, Zhanga C, Zhenga L, Jia Y, Xua M, Zhu T (2018) Resveratrol alleviates inflammatory responses and oxidative stress in rat kidney ischemia-reperfusion injury and H2O2-Induced NRK-52E Cells via the Nrf2/ TLR4/NF-κB pathway. Cell Physiol Biochem 45:1677–1689PubMedGoogle Scholar
  54. 54.
    Poulose SM, Bielinski DF, Carey A, Schauss AG, Shukitt-Hale B (2017) Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açai-enriched diets. Nutr Neurosci 20(5):305–315PubMedGoogle Scholar
  55. 55.
    Costa CA de, Ognibene DT, Cordeiro VSC et al (2017) Effect of Euterpe oleracea Mart. Seeds extract on chronic ischemic renal injury in renovascular hypertensive rats. J Med Food 1–9Google Scholar
  56. 56.
    Rocha AP, Carvalho LC, Sousa MA et al (2007) Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (açai) extracts in mesenteric vascular bed of the rat. Vascul Pharmacol 46(2):97–104PubMedGoogle Scholar
  57. 57.
    Noratto GD, Angel-Morales G, Talcott ST, Mertens-Talcott SU (2011) Polyphenolics from açaí (Euterpe oleracea Mart.) and red muscadine grape (Vitis rotundifolia) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126. J Agric Food Chem 59(14):7999–8012PubMedGoogle Scholar
  58. 58.
    Spada PD, Dani C, Bortolini GV, Funchal C, Henriques JA, Salvador M (2009) Frozen fruit pulp of Euterpe oleraceae Mart. (Acai) prevents hydrogen peroxide-induced damage in the cerebral cortex, cerebellum, and hippocampus of rats. J Med Food 12(5):1084–1088PubMedGoogle Scholar
  59. 59.
    Poulose SM, Fisher DR, Larson J et al (2012) Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 60(4):1084–1093PubMedGoogle Scholar
  60. 60.
    Wong DY, Musgrave IF, Harvey BS, Smid SD (2013) Açai (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro. Neurosci Lett 556:221–226PubMedGoogle Scholar
  61. 61.
    Silva Santos V, Bisen-Hersh E, Yu Y et al (2014) Anthocyanin-rich açai (Euterpe oleracea Mart.) extract attenuates manganese-induced oxidative stress in rat primary astrocyte cultures. J Toxicol Environ Health 77(7):390–404Google Scholar
  62. 62.
    Torma PD, Brasil AV, Carvalho AV et al (2017) Hydroethanolic extracts from different genotypes of açai (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y). Food Chem 222:94–104PubMedGoogle Scholar
  63. 63.
    Sun X, Seeberger J, Alberico T et al (2010) Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45(3):243–251PubMedPubMedCentralGoogle Scholar
  64. 64.
    Vrailas-Mortimer A, Gomez R, Dowse H, Sanyal S (2012) A survey of the protective effects of some commercially available antioxidant supplements in genetically and chemically induced models of oxidative stress in Drosophila melanogaster. Exp Gerontol 47(9):712–722PubMedPubMedCentralGoogle Scholar
  65. 65.
    Horiguchi T, Ishiguro N, Chihara K et al (2011) Inhibitory effect of açaí (Euterpe oleracea Mart.) pulp on IgE-mediated mast cell activation. J Agric Food Chem 59(10):5595–5601PubMedGoogle Scholar
  66. 66.
    Silva DF, Vidal FC, Santos D et al (2014) Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines. BMC Complement Altern Med 14:175PubMedPubMedCentralGoogle Scholar
  67. 67.
    Freitas DDS, Morgado-Díaz JA, Gehren AS et al (2017) Cytotoxic analysis and chemical characterization of fractions of the hydroalcoholic extract of the Euterpe oleracea Mart. seed in the MCF-7 cell line. J Pharm Pharmacol 69(6):714–721PubMedGoogle Scholar
  68. 68.
    Xie C, Kang J, Li Z et al (2012) The açai flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-κ and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem 23(9):1184–1191PubMedGoogle Scholar
  69. 69.
    Alqurashi RM, Alarifi SN, Walton GE, Costabile AF, Rowland IR, Commane DM (2017) In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota. Food Chem 234:190–198PubMedGoogle Scholar
  70. 70.
    Bonomo LdeF, Silva DN, Boasquivis PF et al (2014) Açai (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms. PLoS ONE 9(3):e89933PubMedCentralGoogle Scholar
  71. 71.
    Peixoto H, Roxo M, Kristin S, Röhrig T, Richling E, Wink M (2016) An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. J Agric Food Chem 64(6):1283–1290PubMedGoogle Scholar
  72. 72.
    Brito C, Stavroullakis AT, Ferreira AC et al (2016) Extract of acai-berry inhibits osteoclast differentiation and activity. Arch Oral Biol 68:29–34PubMedGoogle Scholar
  73. 73.
    Petruk G, Illiano A, Del Giudice R et al (2017) Malvidin and cyanidin derivatives from açai fruit (Euterpe oleracea Mart.) counteract UV-A-induced oxidative stress in immortalized fibroblasts. J Photochem Photobiol B 172:42–51PubMedGoogle Scholar
  74. 74.
    Kang MH, Choi S, Kim BH (2017) Skin wound healing effects and action mechanism of acai berry water extracts. Toxicol Res 33(2):149–156PubMedPubMedCentralGoogle Scholar
  75. 75.
    Guerra JF, Magalhães CL, Costa DC, Silva ME, Pedrosa ML (2011) Dietary açai modulates ROS production by neutrophils and gene expression of liver antioxidant enzymes in rats. J Clin Biochem Nutr 49(3):188–1 94PubMedPubMedCentralGoogle Scholar
  76. 76.
    Xie C, Kang J, Burris R et al (2011) Açai juice attenuates atherosclerosis in ApoE deficient mice through antioxidant and anti-inflammatory activities. Atherosclerosis 216(2):327–333PubMedGoogle Scholar
  77. 77.
    Moura RS, Pires KM, Santos Ferreira T et al (2011) Addition of açai (Euterpe oleracea) to cigarettes has a protective effect against emphysema in mice. Food Chem Toxicol 49(4):55–63Google Scholar
  78. 78.
    Kim JY, Hong JH, Jung HK, Jeong YS, Cho KH (2012) Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish. Int J Mol Med 30(3):606–614PubMedGoogle Scholar
  79. 79.
    Moura RS, Ferreira TS, Lopes AA et al (2012) Effects of Euterpe oleracea Mart. (açai) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 19(3–4):262–269PubMedGoogle Scholar
  80. 80.
    Costa CA, de Oliveira PR, de Bem GF et al (2012) Euterpe oleracea Mart.-derived polyphenols prevent endothelial dysfunction and vascular structural changes in renovascular hypertensive rats: role of oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 385(12):1199–1209PubMedGoogle Scholar
  81. 81.
    Feio CA, Izar MC, Ihara SS et al (2012) Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis. J Atheroscler Thromb 19(3):237–245 (2012)PubMedGoogle Scholar
  82. 82.
    Fragoso MF, Prado MG, Barbosa L, Rocha NS, Barbisan LF (2012) Inhibition of mouse urinary bladder carcinogenesis by açai fruit (Euterpe oleraceae Mart.) intake. Plant Foods Hum Nutr 67(3):235 – 41PubMedGoogle Scholar
  83. 83.
    Souza MO, Souza EL, de Brito Magalhães CL et al (2012) The hypocholesterolemic activity of açai (Euterpe oleracea Mart.) is mediated by the enhanced expression of the ATP-binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat. Nutr Res 32(12):976–984PubMedGoogle Scholar
  84. 84.
    Fragoso MF, Romualdo GR, Ribeiro DA, Barbisan LF (2013) Açai (Euterpe oleracea Mart.) feeding attenuates dimethylhydrazine-induced rat colon carcinogenesis. Food Chem Toxicol 58:68–76PubMedGoogle Scholar
  85. 85.
    Castro CA, Natali AJ, Cardoso LM et al (2014) Aerobic exercise and not a diet supplemented with jussara açai (Euterpe edulis Martius) alters hepatic oxidative and inflammatory biomarkers in ApoE-deficient mice. Br J Nutr 112(3):285–294PubMedGoogle Scholar
  86. 86.
    Laslo M, Sun X, Hsiao CT, Wu WW, Shen RF, Zou S (2013) A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies. Age (Dordr) 35(4):1117–1132Google Scholar
  87. 87.
    Bem GF, da Costa CA, de Oliveira PR et al (2014) Protective effect of Euterpe oleracea Mart (açai) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy. J Pharm Pharmacol 66(9):1328–1338PubMedGoogle Scholar
  88. 88.
    Unis A (2015) Açai berry extract attenuates glycerol-induced acute renal failure in rats. Ren Fail 37(2):310–317PubMedGoogle Scholar
  89. 89.
    Poulose SM, Fisher DR, Bielinski DF et al (2014) Restoration of stressor-induced calcium dysregulation and autophagy inhibition by polyphenol-rich açai (Euterpe spp.) fruit pulp extracts in rodent brain cells in vitro. Nutrition 30(7–8):853–862Google Scholar
  90. 90.
    Qu SS, Zhang JJ, Li YX, Zheng Y, Zhu YL, Wang LY (2014) Protective effect of Acai berries on chronic alcoholic hepatic injury in rats and their effect on inflammatory cytokines. Zhongguo Zhong Yao Za Zhi 39(24):4869–4872PubMedGoogle Scholar
  91. 91.
    Sudo RT, Neto ML, Monteiro CE et al (2015) Antinociceptive effects of hydroalcoholic extract from Euterpe oleracea Mart. (açai) in a rodent model of acute and neuropathic pain. BMC Complement Altern Med 15(2):208PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kim H, Simbo S, Chown J et al (2015) The consumption of acai beverage (Euterpe oleracea Mart.) improves biomarkers for inflammation in individuals with the metabolic syndrome. FASEB J 29(1):259–264Google Scholar
  93. 93.
    Souza-Monteiro JR, Hamoy M, Santana-Coelho D et al (2015) Anticonvulsant properties of Euterpe oleracea in mice. Neurochem Int 90:20–27PubMedGoogle Scholar
  94. 94.
    Oliveira PR, da Costa CA, de Bem GF et al (2015) Euterpe oleracea Mart.-derived polyphenols protect mice from diet-induced obesity and fatty liver by regulating hepatic lipogenesis and cholesterol excretion. PLoS ONE 10(12):e0143721PubMedPubMedCentralGoogle Scholar
  95. 95.
    Marques CL, Dias NR, Castro AC et al (2015) Chemical composition, characterization of anthocyanins and antioxidant potential of Euterpe edulis fruits: applicability on genetic dyslipidemia and hepatic steatosis in mice. Nutr Hosp 32(2):702–709Google Scholar
  96. 96.
    Souza Machado F, Marinho JP, Abujamra AL, Dani C, Quincozes-Santos A, Funchal C (2015) Carbon tetrachloride increases the pro-inflammatory cytokines levels in different brain areas of Wistar rats: the protective effect of acai frozen pulp. Neurochem Res 40(9):1976–1983PubMedGoogle Scholar
  97. 97.
    Machado AK, Andreazza AC, da Silva TM et al (2016) Neuroprotective effects of açai (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid Med Cell Longev 8940850Google Scholar
  98. 98.
    Machado DE, Rodrigues-Baptista KC, Alessandra-Perini J et al (2016) Euterpe oleracea Extract (açai) is a promising novel pharmacological therapeutic treatment for experimental endometriosis. PLoS ONE 11(11):e0166059PubMedPubMedCentralGoogle Scholar
  99. 99.
    Brasil A, Rocha FAF, Gomes BD et al (2017) Diet enriched with the Amazon fruit açai (Euterpe oleracea) prevents electrophysiological deficits and oxidative stress induced by methyl-mercury in the rat retina. Nutr Neurosci 20(5):265–272PubMedGoogle Scholar
  100. 100.
    Nascimento VH, Lima CD, Paixão JT, Freitas JJ, Kietzer KS (2016) Antioxidant effects of açai seed (Euterpe oleracea) in anorexia-cachexia syndrome induced by Walker-256 tumor. Acta Cir Bras 31(9):597–601PubMedGoogle Scholar
  101. 101.
    Carey AN, Miller MG, Fisher DR et al (2017) Dietary supplementation with the polyphenol-rich açai pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr Neurosci 20(4):238–245PubMedGoogle Scholar
  102. 102.
    Silva CCV, de Bem GF, da Costa CA et al (2017) Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress. Eur J Nutr 20Google Scholar
  103. 103.
    Monge-Fuentes V, Muehlmann LA, Longo JP et al (2017) Photodynamic therapy mediated by acai oil (Euterpe oleracea Mart.) in nanoemulsion: a potential treatment for melanoma. J Photochem Photobiol B 166:301–310PubMedGoogle Scholar
  104. 104.
    Choi YJ, Kim N, Nam RH et al (2017) Açai berries inhibit colon tumorigenesis in azoxymethane/dextran sulfate sodium-treated mice. Gut Liver 11(2):243–252PubMedGoogle Scholar
  105. 105.
    Shanely RA, Knab AM, Nieman DC, Jin F, McAnulty SR, Landram MJ (2010) Quercetin supplementation does not alter antioxidant status in humans. Free Radic Res 44(2):224–231PubMedGoogle Scholar
  106. 106.
    Saldanha JF, Leal VO, Rizzetto F, Grimmer GH, Ribeiro-Alves M, Daleprane JB, Carraro-Eduardo JC, Mafra D (2016) Effects of resveratrol supplementation in Nrf2 and NF-κB expressions in nondialyzed chronic kidney disease patients: a randomized, double-blind, placebo-controlled, crossover clinical trial. J Ren Nutr 26(6):401–406PubMedGoogle Scholar
  107. 107.
    Gale AM, Kaur R, Baker WL (2014) Hemodynamic and electrocardiographic effects of açai berry in healthy volunteers: a randomized controlled trial. Int J Cardiol 174(2):421–423PubMedGoogle Scholar
  108. 108.
    Carvalho-Peixoto J, Moura MR, Cunha FA et al (2015) Consumption of açai (Euterpe oleracea Mart.) functional beverage reduces muscle stress and improves effort tolerance in elite athletes: a randomized controlled intervention study. Appl Physiol Nutr Metab 40(7):725–733PubMedGoogle Scholar
  109. 109.
    Sousa Pereira I, Moreira CMPTC., Lima VRA et al (2015) The consumption of acai pulp changes the concentrations of plasminogen activator inhibitor-1 and epidermal growth factor (EGF) in apparently healthy women. Nutr Hosp 32(2):931–945PubMedGoogle Scholar
  110. 110.
    Alqurashi RM, Galante LA, Rowland IR, Spencer JP, Commane DM (2016) Consumption of a flavonoid-rich açai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men. Am J Clin Nutr 104(5):1227–1235PubMedGoogle Scholar
  111. 111.
    Barbosa PO, Pala D, Silva CT et al (2016) Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition 32(6):674–680PubMedGoogle Scholar
  112. 112.
    Pala D, Barbosa PO, Silva CT et al (2017) Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: a prospective study in women. Clin Nutr. CrossRefPubMedGoogle Scholar
  113. 113.
    Small DM, Coombes JS, Bennett N, Johnson DW, Gobe G (2012) Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology 17(4):311–321PubMedGoogle Scholar
  114. 114.
    Modaresi A, Nafar M, Sahraei Z (2015) Oxidative stress in chronic kidney disease. Iran J Kidney Dis 9(3):165–179PubMedGoogle Scholar
  115. 115.
    Chen Y, Gill PS, Welch WJ (2005) Oxygen availability limits renal NADPH-dependent superoxide production. Am J Physiol Renal Physiol 289:F749–F753PubMedGoogle Scholar
  116. 116.
    Garvin JL, Ortiz PA (2003) The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand 179(3):225–232PubMedGoogle Scholar
  117. 117.
    Guijarro C, Egido J (2001) Transcription factor-κB (NF-κB) and renal disease. Kidney Int 59:415–424PubMedGoogle Scholar
  118. 118.
    Tucker PS, Scanlan AT, Dalbo VJ (2015) Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxid Med Cell Longev. CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Mircescu G (2008) Oxidative stress of chronic kidney disease. Acta Endocrinol 4(4): 433–446Google Scholar
  120. 120.
    Fouque D, Vennegoor M, Wee PT et al (2007) EBPG guideline on nutrition. Nephrol Dial Transplant 22(2):45–87Google Scholar
  121. 121.
    Nakhoul GN, Huang H, Arrigain S, Jolly SE, Schold JD, Nally JV Jr, Navaneethan SD (2015) Serum potassium, end-stage renal disease and mortality in chronic kidney disease. Am J Nephrol 41(6):456–463PubMedPubMedCentralGoogle Scholar
  122. 122.
    Gilligan S, Raphael KL (2017) Hyperkalemia and hypokalemia in CKD: prevalence, risk factors, and clinical outcomes. Adv Chronic Kidney Dis 24(5):315–318PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Isabelle C. V. S. Martins
    • 1
    Email author
  • Natália A. Borges
    • 2
  • Peter Stenvinkel
    • 3
  • Bengt Lindholm
    • 3
  • Hervé Rogez
    • 4
  • Maria C. N. Pinheiro
    • 5
  • José L. M. Nascimento
    • 1
    • 6
    • 7
  • Denise Mafra
    • 2
    • 8
  1. 1.Neuroscience and Cell Biology Graduate ProgramFederal University Pará (UFPA)BelémBrazil
  2. 2.Cardiovascular Science Graduate ProgramFederal University Fluminense (UFF)NiteróiBrazil
  3. 3.Division of Renal Medicine, Department of Clinical Science Intervention and TechnologyKarolinska University HospitalStockholmSweden
  4. 4.Centre for Agro-food Valorisation of Amazonian Bioactive CompoundUFPABelémBrazil
  5. 5.Tropical Diseases Graduate ProgramUFPABelémBrazil
  6. 6.Neuroscience ResearchCeuma UniversitySão LuisBrazil
  7. 7.National Institute of Science and Technology in NeuroimmunomodulationRio de JaneiroBrazil
  8. 8.Medical Science Graduate ProgramUFFNiteróiBrazil

Personalised recommendations