Advertisement

Ukrainian Mathematical Journal

, Volume 71, Issue 7, pp 1115–1137 | Cite as

Characterization of Weakly Berwald Fourth-Root Metrics

  • T. R. KhoshdaniEmail author
  • N. Abazari
Article
  • 1 Downloads

In recent studies, it has been shown that the theory of fourth-root metrics plays a very important role in physics, theory of space-time structures, gravitation, and general relativity. The class of weakly Berwald metrics contains the class of Berwald metrics as a special case. We establish necessary and sufficient conditions under which the fourth-root Finsler space with an (α, β)-metric is a weakly Berwald space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. L. Antonelli, R. Ingarden, and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer AP, Dordrecht (1993).Google Scholar
  2. 2.
    S. Bàcsó and R. Yoshikawa, “Weakly Berwald spaces,” Publ. Math. Debrecen, 61, 219–231 (2002).MathSciNetzbMATHGoogle Scholar
  3. 3.
    V. Balan and N. Brinzei, “Berwald–Moor-type (h, v)-metric physical models,” Hypercomplex Numbers Geom. Phys., 2, No. 2(4), 114–122 (2005).Google Scholar
  4. 4.
    B. Bidabad and A. Tayebi, “A classification of some Finsler connection and their applications,” Publ. Math. Debrecen, 71, 253–266 (2007).MathSciNetzbMATHGoogle Scholar
  5. 5.
    B. Bidabad and A. Tayebi, “Properties of generalized Berwald connections,” Bull. Iranian Math. Soc., 35, 237–254 (2009).MathSciNetzbMATHGoogle Scholar
  6. 6.
    I. Y. Lee and M. H. Lee, “On weakly Berwald spaces of special (α, β)-metrics,” Bull. Korean Math. Soc., 43, No. 2, 425–441 (2006).Google Scholar
  7. 7.
    S. V. Lebedev, “The generalized Finslerian metric tensors,” Hypercomplex Numbers Geom. Phys., 4, No. 2, 44–50 (2005).Google Scholar
  8. 8.
    M. Matsumoto, “The Berwald connection of a Finsler space with an (α, β)-metric,” Tensor (N.S.), 50, No. 1, 18–21 (1991).Google Scholar
  9. 9.
    M. Matsumoto and H. Shimada, “On Finsler spaces with 1-form metric. II. Berwald–Moór’s metric L = (y 1y 2y n)1/n,” Tensor (N.S.), 32, 275–278 (1978).Google Scholar
  10. 10.
    B. Najafi and A. Tayebi, “On a class of isotropic mean Berwald metrics,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 32, 113–123 (2016).Google Scholar
  11. 11.
    E. Peyghan and A. Tayebi, “Generalized Berwald metrics,” Turkish J. Math., 36, 475–484 (2012).MathSciNetzbMATHGoogle Scholar
  12. 12.
    E. Peyghan and A. Tayebi, “Killing vector fields of horizontal Liouville type,” C. R. Math. Acad. Sci. Paris, 349, 205–208 (2011).MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. G. Pavlov (Ed.), “Space-time structure. Algebra and Geometry,” Collect. Papers, TETRU, Moscow (2006).Google Scholar
  14. 14.
    D. G. Pavlov, “Four-dimensional time,” Hypercomplex Numbers Geom. Phys., 1, No. 1, 31–39 (2004).Google Scholar
  15. 15.
    H. Shimada, “On Finsler spaces with metric \( L=\sqrt[m]{a_{i_1{i}_2\dots {i}_m}{y}^{i_1}{y}^{i_2}\cdots {y}^{i_m}} \),” Tensor (N.S.), 33, 365–372 (1979).Google Scholar
  16. 16.
    A. Tayebi, “On the class of generalized Landsberg manifolds,” Period. Math. Hungar., 72, 29–36 (2016).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Tayebi and M. Barzagari, “Generalized Berwald spaces with (α, β)-metrics,” Indag. Math. (N.S.), 27, 670–683 (2016).Google Scholar
  18. 18.
    A. Tayebi and B. Najafi, “On m-th root Finsler metrics,” J. Geom. Phys., 61, 1479–1484 (2011).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Tayebi and B. Najafi, “On m-th root metrics with special curvature properties,” C. R. Math. Acad. Sci. Paris, 349, 691–693 (2011).MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Tayebi, A. Nankali, and E. Peyghan, “Some curvature properties of Cartan spaces with m-th root metrics,” Lith. Math. J., 54, No. 1, 106–114 (2014).Google Scholar
  21. 21.
    A. Tayebi, A. Nankali, and E. Peyghan, “Some properties of m-th root Finsler metrics,” J. Contemp. Math. Anal., 49, No. 4, 157–166 (2014).Google Scholar
  22. 22.
    A. Tayebi, E. Peyghan, and M. Shahbazi Nia, “On generalizedm-th root Finsler metrics,” Linear Algebra Appl., 437, 675–683 (2012).MathSciNetCrossRefGoogle Scholar
  23. 23.
    A. Tayebi and E. Peyghan, “On E-curvature of R-quadratic Finsler metrics,” Acta Math. Acad. Paedagog. Nyházi. (N.S.), 28, 83–89 (2012).Google Scholar
  24. 24.
    A. Tayebi and H. Sadeghi, “Generalized P-reducible (α, β)-metrics with vanishing S-curvature,” Ann. Polon. Math., 114, 67–79 (2015).MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Tayebi and H. Sadeghi, “On generalized Douglas–Weyl (α, β)-metrics,” Acta Math. Sin. Engl. Ser., 31, No. 10, 1611–1620 (2015).Google Scholar
  26. 26.
    A. Tayebi and M. Shahbazi Nia, “A new class of projectively flat Finsler metrics with constant flag curvature K = 1,” Differential Geom. Appl., 41, 123–133 (2015).MathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Tayebi, T. Tabatabaeifar, and E. Peyghan, “On Kropina change of mth root Finsler metrics,” Ukr. Math. Zh., 66, No. 1, 140–144 (2014); English translation: Ukr. Math. J., 66, No. 1, 160–164 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Mohaghegh ArdabiliArdabilIran

Personalised recommendations