Advertisement

Ukrainian Mathematical Journal

, Volume 71, Issue 6, pp 970–976 | Cite as

Finite Simple Groups with Hall {2, r}-Subgroups, r 𝜖 𝜋(G)\{2, t}, t 𝜖 𝜋(G)

  • S. Yu. BashunEmail author
BRIEF COMMUNICATIONS
  • 2 Downloads

We describe finite simple groups with Hall biprimary subgroups of even order that contain Sylow subgroups of odd order of the G-group, with the exception of one Sylow’s subgroup of odd order.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Tyutyanov, “On a Hall hypothesis,” Ukr. Mat. Zh., 54, No. 7, 981–990 (2002); English translation: Ukr. Math. J., 54, No. 5, 1181–1191 (2002).Google Scholar
  2. 2.
    D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification [Russian translation], Mir, Moscow (1975).zbMATHGoogle Scholar
  3. 3.
    B. Huppert, Endliche Gruppen, I, Springer, Berlin (1967).CrossRefGoogle Scholar
  4. 4.
    F. Gross, “Hall subgroups of order not divisible by 3,” Rocky Mountain J. Math., 23, No. 2, 569–591 (1993).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Z. Arad and E. Fisman, “On finite factorizable groups,” J. Algebra, 86, No. 2, 522–548 (1984).MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. P. Vdovin and D. O. Revin, “Sylow-type theorems,” Usp. Mat. Nauk, 66, No. 5, 3–46 (2011).MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, London (1985).zbMATHGoogle Scholar
  8. 8.
    B. Huppert and N. Blackburn, Finite Groups, III, Springer, Berlin (1982).Google Scholar
  9. 9.
    K. Zsigmondy, “Zur theorie der Potenzreste,” Monatsh. Math. Phys., 3, No. 2, 265–284 (1892).MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. S. Kondrat’ev, “Subgroups of finite Chevalley groups,” Usp. Mat. Nauk, 41, No. 1, 57–96 (1986).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Y. Bugeaud, G. Hanrot, and M. Mignotte, “Sur l’équation diophantienne (x n 1)/(x − 1) = y a. III,” Proc. London Math. Soc., 84, No. 1, 59–78 (2002).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Polotsk State UniversityNavapolatskBelarus

Personalised recommendations