Approximating Characteristics of the Classes of Periodic Multivariate Functions in the Space B∞,1
Article
First Online:
- 8 Downloads
- 2 Citations
We obtain the exact-order estimates of the Kolmogorov widths and entropy numbers for the classes \( {\mathbbm{W}}_{p,\alpha}^r \) and \( {\mathbbm{B}}_{p,\theta}^r \) in the norm of the space B∞,1.
Preview
Unable to display preview. Download preview PDF.
References
- 1.D. Ding, V. N. Temlyakov, and T. Ullrich, Hyperbolic Cross Approximation, Preprint arXiv: 1601.03978 v 3 [math. NA] 21 Apr. (2017).Google Scholar
- 2.V. S. Romanyuk, “Kolmogorov widths and entropy numbers in the Orlicz spaces with Luxembourg norm,” Ukr. Mat. Zh., 69, No. 5, 682–694 (2017); English translation: Ukr. Math. J., 69, No. 5, 796–810 (2017).Google Scholar
- 3.P. I. Lizorkin and S. M. Nikol’skii, “Spaces of functions of mixed smoothness from the decomposition point of view,” Tr. Mat. Inst. Akad. Nauk SSSR, 187, 143–161 (1989).Google Scholar
- 4.O. V. Besov, “Investigations of one family of function spaces in connection with embedding and extension theorems,” Tr. Mat. Inst. Akad. Nauk SSSR, 60, 42–61 (1961).Google Scholar
- 5.S. M. Nikol’skii, “Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).Google Scholar
- 6.T. I. Amanov, “Representation and embedding theorems for the function spaces \( {S}_{p,\theta}^{(r)}B\left({\mathrm{\mathbb{R}}}^n\right) \) and \( {S}_{p,\theta}^{(r)}B\left(0\le {x}_j\le 2\uppi; j=1,\dots, n\right) \),” Tr. Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965).Google Scholar
- 7.S. M. Nikol’skii, Approximation of Multivariate Functions of Many Variables and Embedding Theorems [in Russian], Nauka, Moscow (1969).Google Scholar
- 8.V. N. Temlyakov, “Approximation of functions with bounded mixed derivatives” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 1–112 (1986).MathSciNetGoogle Scholar
- 9.V. N. Temlyakov, Approximation of Periodic Functions, Nova Science, New York (1993).Google Scholar
- 10.A. S. Romanyuk, Approximating Characteristics of Classes of Periodic Multivariate Functions [in Russian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2012).Google Scholar
- 11.V. N. Temlyakov, “Estimates for the asymptotic characteristics of the classes of functions with bounded mixed derivative or difference,” Tr. Mat. Inst. Akad. Nauk SSSR, 189, 138–168 (1989).MathSciNetGoogle Scholar
- 12.A. S. Romanyuk, “Entropy numbers and widths for the classes \( {B}_{p,\theta}^r \) of periodic multivariate functions,” Ukr. Mat. Zh., 68, No. 10, 1403–1417 (2016); English translation: Ukr. Math. J., 68, No. 10, 1620–1636 (2017).Google Scholar
- 13.K. Höllig, “Diameters of classes of smooth functions,” in: Quantitative Approximation, Academic Press, New York (1980), pp. 163–176.Google Scholar
- 14.A. Kolmogoroff, “Über die beste Annäherung von Functionen einer gegeben Funktionenklasse,” Ann. Math., 37, No. 2, 107–111 (1936).MathSciNetCrossRefGoogle Scholar
- 15.V. M. Tikhomirov, “Widths of sets in function spaces and the theory of best approximations,” Usp. Mat. Nauk, 15, No. 3, 81–120 (1960).Google Scholar
- 16.P. S. Ismagilov, “Widths of sets in linear normalized spaces and approximation of functions by trigonometric polynomials,” Usp. Mat. Nauk, 29, No. 3, 161–178 (1974).Google Scholar
- 17.É. S. Belinskii, “Asymptotic characteristics of the classes of functions with conditions for mixed derivative (mixed difference),” in: Investigations in the Theory of Functions of Many Real Variables [in Russian], Yaroslavl’skii Universitet (1990), pp. 22–37.Google Scholar
- 18.E. S. Belinsky, “Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative,” J. Approxim. Theory, 93, 114–127 (1998).MathSciNetCrossRefGoogle Scholar
- 19.V. N. Temlyakov, “On two problems in the multivariate approximation,” East J. Approxim., 4, 505–514 (1998).MathSciNetzbMATHGoogle Scholar
- 20.B. S. Kashin and V. N. Temlyakov, “Estimation of the approximating characteristics of classes of functions with bounded mixed derivative,” Mat. Zametki, 58, No. 6, 922–925 (1995).Google Scholar
- 21.V. N. Temlyakov, “An inequality for trigonometric polynomials and its application for estimating the Kolmogorov widths,” East J. Approxim., 2, No. 1, 89–98 (1996).MathSciNetzbMATHGoogle Scholar
- 22.A. S. Romanyuk, “Widths and the best approximation of the classes \( {B}_{p,\theta}^r \) of periodic functions of many variables,” Anal. Math., 37, 181–213 (2011).MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2019