Advertisement

On the Generalization of Some Hermite–Hadamard Inequalities for Functions with Convex Absolute Values of the Second Derivatives Via Fractional Integrals

  • F. X. Chen
Article
  • 4 Downloads

We provide a unified approach to getting Hermite–Hadamard inequalities for functions with convex absolute values of the second derivatives via the Riemann–Liouville integrals. Some particular inequalities generalizing the classical results, such as the trapezoid inequality, Simpson’s inequality, and midpoint inequality are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alomari, M. Darus, and S. S. Dragomir, “New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasiconvex,” RGMIA Res. Rep. Coll., 12, Supplement, Article 17 (2009).Google Scholar
  2. 2.
    M. Bessenyei and Z. Páles, “Hadamard-type inequalities for generalized convex functions,” Math. Inequal. Appl., 6, No. 3, 379–392 (2003).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Y. M. Chu, G. D. Wang, and X. H. Zhang, “Schur convexity and Hadamard’s inequality,” Math. Inequal. Appl., 13, No. 4, 725–731 (2010).MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. E. Farissi, “Simple proof and refinement of Hermite–Hadamard inequality,” J. Math. Inequal., 4, No. 3, 365–369 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    X. Gao, “A note on the Hermite–Hadamard inequality,” J. Math. Inequal., 4, No. 4, 587–591 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. M. Gill, C. E. M. Pearce, and J. Pečarić, “Hadamard’s inequality for r-convex functions,” J. Math. Anal. Appl., 215, No. 2, 461–470 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    U. S. Kirmaci, M. K. Bakula, M. E. Özdemir, and J. Pečarić, Hadamard-type inequalities for s-convex functions,” Appl. Math. Comput., 1(193), 26–35 (2007).Google Scholar
  8. 8.
    M. Z. Sarikaya et al., “New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are convex and quasiconvex,” arXiv:1005.0451.Google Scholar
  9. 9.
    M. Z. Sarikaya and N. Aktan, “On the generalization of some integral inequalities and their applications,” Math. Comput. Model., 54, 2175–2182 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Z. Sarikaya et al., Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities,” Math. Comput. Model., 57, 2403–2407 (2013).Google Scholar
  11. 11.
    J. R. Wang et al., “Hermite–Hadamard-type inequalities for Riemann–Liouville fractional integrals via two kinds of convexity,” Appl. Anal. (2012).Google Scholar
  12. 12.
    X. M. Zhang, Y. M. Chu, and X. H. Zhang, “The Hermite–Hadamard type inequality of GA-convex functions and its applications,” J. Inequal. Appl., 2010, 507–560 (2010).Google Scholar
  13. 13.
    Y. R. Zhang and J. R. Wang, “On some new Hermite–Hadamard inequalities involving Riemann–Liouville fractional integrals,” J. Inequal. Appl., 2013 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • F. X. Chen
    • 1
  1. 1.Key Laboratory for Nonlinear Sciences and System Structure, School of Mathematics and StatisticsChongqing Three Gorges UniversityChongqingChina

Personalised recommendations