Advertisement

On the Generalized Ideal Asymptotically Statistical Equivalent of Order α for Functions

  • R. Savaş
  • M. Öztürk
Article
  • 2 Downloads

We introduce new definitions related to the notions of asymptotically Iλ -statistical equivalent of order α to multiple L and strongly Iλ -asymptotically equivalent of order α to multiple L by using two nonnegative real-valued Lebesque measurable functions in the interval (1, ∞) instead of sequences. In addition, we also present some inclusion theorems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Cakalli, “A study on statistical convergence,” Funct. Anal. Approx. Comput., 1, No. 2, 19–24 (2009).MathSciNetzbMATHGoogle Scholar
  2. 2.
    R. Colak, “Statistical convergence of order α,” Modern Methods in Analysis and Its Applications, Anamaya Publ., New Delhi, India (2010), pp. 121–129.Google Scholar
  3. 3.
    R. Colak and C. A. Bektas, “λ-Statistical convergence of order α,” Acta Math. Sci. Ser. B Eng. Ed., 31, No. 3, 953–959 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. Connor and E. Savas, “Lacunary statistical and sliding window convergence for measurable functions,” Acta Math. Hungar., 145, No. 2, 416–432 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    P. Das, E. Savaş, and S. Kr. Ghosal, “On generalizations of certain summability methods using ideals,” Appl. Math. Lett., 24, No. 9, 1509–1514 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. Das and E. Savaş, “On I-statistical and I-lacunary statistical convergence of order α,” Bull. Iran. Math. Soc., 40, No. 2, 459–472 (2014).MathSciNetzbMATHGoogle Scholar
  7. 7.
    K. Dems, “On I-Cauchy sequences,” Real Anal. Exchange, 30, 123–128 (2004-2005).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Fast, “Sur la convergence statistique,” Colloq. Math., 2, 241–244 (1951).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. A. Fridy, “On statistical convergence,” Analysis, 5, Issue 4, 301–313 (1985).MathSciNetzbMATHGoogle Scholar
  10. 10.
    H. Gümüs and E. Savaş, “On \( {S}_{\lambda}^L \) (I)-asymptotically statistical equivalent sequences,” Numerical Analysis and Applied Mathematics (ICNAAM-2012): AIP Conf. Proceed., 1479, 936–941 (2012).Google Scholar
  11. 11.
    P. Kostyrko, T. Salat, and W. Wilczynski, “I-convergence,” Real Anal. Exchange, 26, No. 2, 669–686 (2000/2001).MathSciNetzbMATHGoogle Scholar
  12. 12.
    V. Kumar and A. Sharma, “On asymptotically generalized statistical equivalent sequences via ideal,” J. Tamkang Math., 43, No. 3, 469–478 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Li, “Asymptotic equivalence of sequences and summability,” Internat. J. Math. Math. Sci., 20, No. 4, 749–758 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Marouf, “Asymptotic equivalence and summability,” Internat. J. Math. Math. Sci., 16, No. 4, 755–762 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Mursaleen, “λ-Statistical convergence,” Math. Slovaca, 50, 111–115 (2000).MathSciNetzbMATHGoogle Scholar
  16. 16.
    F. Nuray, “λ-Strongly summable and λ statistically convergent functions,” Iran. J. Sci. Technol. Trans. A Sci., 34, No. 4, 335–339 (2010).MathSciNetGoogle Scholar
  17. 17.
    R. F. Patterson, “On asymptotically statistically equivalent sequences,” Demonstr. Math., 36, No. 1, 149–153 (2003).zbMATHGoogle Scholar
  18. 18.
    T. Šalát, “On statistically convergent sequences of real numbers,” Math. Slovaca, 30, 139–150 (1980).MathSciNetzbMATHGoogle Scholar
  19. 19.
    R. Savaş and M. Basarir, “(σ, λ)-Asymptotically statistical equivalent sequences,” Filomat, 20, No. 1, 35–42 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    E. Savaş, “∆m-Strongly summable sequences spaces in 2-normed spaces defined by ideal convergence and an Orlicz function,” Appl. Math. Comput., 217, 271–276 (2010).MathSciNetzbMATHGoogle Scholar
  21. 21.
    E. Savaş, “A-sequence spaces in 2-normed space defined by ideal convergence and an Orlicz function,” Abstr. Appl. Anal., 2011, Article ID 741382 (2011).Google Scholar
  22. 22.
    E. Savaş, “On some new sequence spaces in 2-normed spaces using ideal convergence and an Orlicz function,” J. Inequal. Appl., Article No. 482392 (2010).Google Scholar
  23. 23.
    E. Savaş and P. Das, “A generalized statistical convergence via ideals,” Appl. Math. Lett., 24, 826–830 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    E. Savaş, “On I-asymptotically lacunary statistical equivalent sequences,” Adv. Difference Equat., No. 111 (2013).Google Scholar
  25. 25.
    E. Savaş, “On asymptotically I-statistical equivalent sequences of order α,” Indian J. Math., 56, No. 2 (2014).Google Scholar
  26. 26.
    E. Savaş and H. Gümüs, “A generalization on I-asymptotically lacunary statistical equivalent sequences,” J. Inequal. Appl., 2013, No. 270 (2013).Google Scholar
  27. 27.
    I. J. Schoenberg, “The integrability methods,” Amer. Math. Monthly, 66, 361–375 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    H. M. Srivastava, E. Savaş, and R. F. Patterson, “A class of \( {S}_{\lambda}^L \) (I)-asymptotically statistically equivalent functions,” J. Nonlin. Sci. Appl., 11, 1161–1170 (2018).CrossRefGoogle Scholar
  29. 29.
    H. Steinhaus, “Sur la convergence ordinaire et la convergence asymptotique,” Colloq. Math., 2, 73–74 (1951).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. Savaş
    • 1
  • M. Öztürk
    • 1
  1. 1.Sakarya UniversityAdapazanTurkey

Personalised recommendations