Advertisement

Mapping Properties for Convolution Involving Hypergeometric Series

  • M. K. Aouf
  • A. O. Mostafa
  • H. M. Zayed
Article

We introduce sufficient conditions for (Gaussian) hypergeometric functions to be in a subclass of analytic functions. In addition, we investigate several mapping properties for convolutions and integral convolutions involving hypergeometric functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. Aouf, “On certain subclass of analytic p-valent functions of order alpha,” Rend. Mat., 7, No. 8, 89–104 (1988).MathSciNetzbMATHGoogle Scholar
  2. 2.
    M. K. Aouf, A. O. Mostafa, and H. M. Zayed, “Necessity and sufficiency for hypergeometric functions to be in a subclass of analytic functions,” J. Egyptian Math. Soc., 23, 476–481 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. K. Aouf, A. O. Mostafa, and H. M. Zayed, “Some constraints of hypergeometric functions to belong to certain subclasses of analytic functions,” J. Egypt. Math. Soc., 24, 361–366 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. L. Duren, Univalent Functions, Springer-Verlag, New York (1983).zbMATHGoogle Scholar
  5. 5.
    Yu. E. Hohlov, “Operators and operations in the class of univalent functions,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., 10, 83–89 (1978).MathSciNetGoogle Scholar
  6. 6.
    J. A. Kim and K. H. Shon, “Mapping properties for convolutions involving hypergeometric functions,” Int. J. Math. Math. Sci., 17, 1083–1091 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. S. Miller and P. T. Mocanu, “Differential subordinations: theory and applications,” in: Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York (2000).Google Scholar
  8. 8.
    S. Owa, “On certain classes of p-valent functions with negative coefficients,” Simon Stevin, 59, 385–402 (1985).MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. Owa, “On certain subclass of analytic functions,” Math. Japonica, 29, 191–198 (1984).MathSciNetzbMATHGoogle Scholar
  10. 10.
    D. A. Patil and N. K. Thakare, “On convex hulls and extreme points of p-valent starlike and convex classes with applications,” Bull. Math. Soc. Sci. Math. Rouman. (N.S.), 27, No. 75, 145–160 (1983).MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. S. Robertson, “On the theory of univalent functions,” Ann. Math., 37, 374–408 (1936).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. K. Aouf
    • 1
  • A. O. Mostafa
    • 1
  • H. M. Zayed
    • 2
  1. 1.Mansoura UniversityMansouraEgypt
  2. 2.Menoufia UniversityMenofiaEgypt

Personalised recommendations