Advertisement

Subclass of k-Uniformly Starlike Functions Defined by the Symmetric q-Derivative Operator

  • S. Kanas
  • Ş. Altinkaya
  • S. Yalçin
Article
  • 4 Downloads

The theory of q -analogs is frequently encountered in numerous areas, including fractals and dynamical systems. The q -derivatives and q -integrals play an important role in the study of q -deformed quantummechanical simple harmonic oscillators. We define a symmetric operator of q -derivative and study a new family of univalent functions defined by using this operator. We establish some new relations between the functions satisfying the analytic conditions related to conic sections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bharati, R. Parvatham, and A. Swaminathan, “On subclasses of uniformaly convex functions and corresponding class of starlike functions,” Tamkang J. Math., 28, 17–32 (1997).MathSciNetzbMATHGoogle Scholar
  2. 2.
    L. C. Biedenharn, “The quantum group SU q(2) and a q-analogue of the boson operators,” J. Phys. A, 22, L873–L878 (1984).CrossRefzbMATHGoogle Scholar
  3. 3.
    K. L. Brahim and Y. Sidomou, “On some symmetric q-special functions,” La Mat., 68, 107–122 (2013).MathSciNetzbMATHGoogle Scholar
  4. 4.
    G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, MA (1990).zbMATHGoogle Scholar
  5. 5.
    A. W. Goodman, “On uniformly starlike functions,” J. Math. Anal. Appl., 155, 364–370 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    U. Grenander and G. Szegö, Toeplitz forms and their applications,” California Monographs Math. Sci., Univ. California Press, Berkeley (1958).Google Scholar
  7. 7.
    F. H. Jackson, “On q-functions and a certain difference operator,” Trans. Roy. Soc. Edinburgh, 46, 253–281 (1909).CrossRefGoogle Scholar
  8. 8.
    S. Kanas, “Coefficient estimates in subclasses of the Caratheodory class related to conical domains,” Acta Math. Univ. Comen. (N.S.), 74, No. 2, 149–161 (2005).MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. Kanas and H. M. Srivastava, “Linear operators associated with k-uniformly convex functions,” Integral Transforms Spec. Func., 9, 121–132 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. Kanas and T. Yaguchi, “Subclasses of k-uniformly convex and starlike functions defined by generalized derivative,” Publ. Inst. Math. (Beograd) (N.S.), 69 (83), 91–100 (2001).MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. Kanas, “Norm of pre-Schwarzian derivative for the class of k-uniformly convex and k-starlike functions,” Appl. Math. Comput., 215, 2275–2282 (2009).MathSciNetzbMATHGoogle Scholar
  12. 12.
    S. Kanas and D. Raducanu, “Some class of analytic functions related to conic domains,” Math. Slovaca, 64, No. 5, 1183–1196 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S. Kanas and T. Sugawa, “Conformal representations of the interior of an ellipse,” Ann. Acad. Sci. Fenn. Math., 31, 329–348 (2006).MathSciNetzbMATHGoogle Scholar
  14. 14.
    S. Kanas and A. Wisniowska, “Conic regions and k-uniformly starlike functions,” Rev. Roumaine Math. Pures Appl., 45, No. 4, 647–657 (2000).MathSciNetzbMATHGoogle Scholar
  15. 15.
    J. W. Noonan and D. K. Thomas, “On the second Hankel determinant of really mean p-valent functions,” Trans. Amer. Math. Soc., 223, No. 2, 337–346 (1976).MathSciNetzbMATHGoogle Scholar
  16. 16.
    K. I. Noor, “Hankel determinant problem for the class of functions with bounded boundary rotation,” Rev. Roumaine Math. Pures Appl., 28, 731–739 (1983).MathSciNetzbMATHGoogle Scholar
  17. 17.
    T. Hayami and S. Owa, “Generalized Hankel determinant for certain classes,” Int. J. Math. Anal. (N.S.), 52, No. 4, 2473–2585 (2010).zbMATHGoogle Scholar
  18. 18.
    Y. Polatoğlu, “Growth and distortion theorems for generalized q-starlike functions,” Adv. Math., 5, No. 1, 7–12 (2016).zbMATHGoogle Scholar
  19. 19.
    C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen (1975).zbMATHGoogle Scholar
  20. 20.
    S. D. Purohit and R. K. Raina, “Certain subclass of analytic functions associated with fractional q-calculus operators,” Math. Scand., 109, 55–70 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    F. Rønning, “A survey on uniformly convex and uniformly starlike functions,” Ann. Univ. Mariae Curie-Skłodowska, Sec. A, 47, No. 13, 123–134 (1993).MathSciNetzbMATHGoogle Scholar
  22. 22.
    B. Şeker, M. Acu, and S. Sumer Eker, “Subclasses of k-uniformly convex and k-starlike functions defined by Salagean operator,” Bull. Korean Math. Soc., 48, No. 1, 169–182 (2011).MathSciNetzbMATHGoogle Scholar
  23. 23.
    H. M. Srivastava, “Univalent functions, fractional calculus, and associated generalized hypergeometric functions,” in: H. M. Srivastava and S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, John Wiley & Sons, New York, etc. (1989).Google Scholar
  24. 24.
    H. M. Srivastava and A. K. Mishra, “Applications of fractional calculus to parabolic starlike and uniformly convex functions,” Comput. Math. Appl., 39, No. 3-4, 57–69 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. E. Özkan Uçar, “Coefficient inequalities for q-starlike functions,” Appl. Math. Comput., 276, 122–126 (2016).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Kanas
    • 1
  • Ş. Altinkaya
    • 2
  • S. Yalçin
    • 2
  1. 1.University of RzeszowRzeszowPoland
  2. 2.Uludag UniversityBursaTurkey

Personalised recommendations