# Commutative Complex Algebras of the Second Rank with Unity and Some Cases of Plane Orthotropy. II

Article

First Online:

- 2 Downloads

For an algebra \( {\mathbbm{B}}_0:= \left\{{c}_1e+{c}_2\omega :{c}_k\in \mathbb{C},k=1,2\right\} \)such that their real-valued components

*, e*^{2}=*ω*^{2}=*e, eω*=*ωe*=*ω,*over the field of complex numbers ℂ, we consider arbitrary bases (*e, e*_{2}) such that \( e+2p{e}_2^2+{e}_2^4=0 \) for any fixed*p >*1*.*We study \( {\mathbbm{B}}_0 \)-valued “analytic” functions$$ \Phi \left( xe+y{e}_2\right)={U}_1\left(x,y\right)e+{U}_2\left(x,y\right) ie+{U}_3\left(x,y\right){e}_2+{U}_4\left(x,y\right)i{e}_2 $$

*U*_{k}*,*\( k=\overline{1,4} \)*,*satisfy the equation for the stress function*u*in the case of orthotropic plane deformations \( \left(\frac{\partial^4}{\partial {x}^4}+2p\frac{\partial^4}{\partial {x}^2\partial {y}^2}+\frac{\partial^4}{\partial {y}^4}\right)u\left(x,y\right)=0 \), where*x*and*y*are real variables. All functions Φ for which*U*_{1}≡*u*are described in the case of a simply connected domain. Particular solutions of the equilibrium system of equations in displacements are found in the form of linear combinations of the components*U*_{k}*,*\( k=\overline{1,4} \)*,*of the function Φ for some plane orthotropic media.## Preview

Unable to display preview. Download preview PDF.

## References

- 1.S.V. Gryshchuk, “Commutative complex algebras of the second rank with unity and some cases of plane orthotropy. I,”
*Ukr. Mat. Zh.*,**70**, No. 8, 1058–1071 (2018);**English translation:***Ukr. Math. J.*,**70**, No. 8, 1221–1236 (2019).Google Scholar - 2.S.V. Grishchuk and S. A. Plaksa, “Monogenic functions in a biharmonic algebra,”
*Ukr. Mat. Zh.*,**61**, No. 12, 1587–1596 (2009);**English translation:***Ukr. Math. J.*,**61**, No. 12, 1865–1876 (2009).Google Scholar - 3.M. M. Fridman, “Mathematical theory of elasticity of anisotropic media,”
*Prikl. Mat. Mekh.*,**14**, No. 3, 321–340 (1950).MathSciNetGoogle Scholar - 4.S. G. Lekhnitskii,
*Theory of Elasticity of Anisotropic Bodies*[in Russian], Nauka, Moscow (1977).Google Scholar - 5.D. I. Sherman, “Plane problem of the theory of elasticity for anisotropic media,”
*Tr. Seism. Inst. Akad. Nauk SSSR*, No. 6, 51–78 (1938).Google Scholar - 6.Yu. A. Bogan, “Regular integral equations for the second boundary-value problem in the anisotropic two-dimensional theory of elasticity,”
*Izv. Ros. Akad. Nauk, Mekh. Tverd. Tela*, No. 4, 17–26 (2005).Google Scholar - 7.V. F. Kovalev and I. P. Mel’nichencko,
*Algebras of Functional-Invariant Solutions of the p-Biharmonic Equation*[in Russian], Preprint No. 91.10, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1991).Google Scholar - 8.V. F. Kovalev and I. P. Mel’nichencko, “Biharmonic potentials and plane isotropic fields of displacements,”
*Ukr. Mat. Zh.*,**40**, No. 2, 229–231 (1988);**English translation:***Ukr. Math. J.*,**40**, No. 2, 197–199 (1988).Google Scholar - 9.S.V. Gryshchuk, “Hypercomplex monogenic functions of biharmonic variable in some problems of the plane theory of elasticity,”
*Dop. Nats. Akad. Nauk Ukr.*, No. 6, 7–12 (2015).Google Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019