Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 9, pp 1419–1438 | Cite as

First Nontrivial Group of Homologies for the Simplicial Schemes of Unimodular Frames Over the Dedekind Ring

  • B. R. Zainalov
Article
  • 13 Downloads

We prove a theorem on the generation of the first nontrivial group of homologies of a simplicial scheme of unimodular frames over the Dedekind ring by standard cycles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bass, Algebraic K-Theory, Benjamin, New York (1968).zbMATHGoogle Scholar
  2. 2.
    L. N. Vassershtein, “K 1-theory and congruence problem,” Mat. Zametki, 5, 233–244 (1968).Google Scholar
  3. 3.
    L. N. Vassershtein, “On the stabilization of a general linear group over a ring,” Mat. Sb., 79, No. 3, 405–424 (1969).MathSciNetGoogle Scholar
  4. 4.
    L. N. Vassershtein, “Stable rank of the rings and the dimension of topological spaces,” Funkts. Anal. Prilozhen., 5, No. 2, 17–27 (1971).Google Scholar
  5. 5.
    L. N. Vassershtein, “On the stabilization for the Milnor K 2 -functor,” Usp. Mat. Nauk, 30, No. 1, 224–237 (1975).Google Scholar
  6. 6.
    L. N. Vassershtein, “On the SL 2 group over Dedekind rings of arithmetic type,” Mat. Sb., 89, No. 2, 313–322 (1972).MathSciNetGoogle Scholar
  7. 7.
    A. Dold, Lectures on Algebraic Topology, Springer, Berlin (1976).zbMATHGoogle Scholar
  8. 8.
    B. R. Zainalov and A. A. Suslin, “Homologic stabilization for Dedekind rings of the arithmetic type,” Ukr. Mat. Zh., 64, No. 11, 1464–1476 (2012); English translation: Ukr. Math. J., 64, No. 11, 1658–1671 (2013).Google Scholar
  9. 9.
    B. R. Zainalov, “Preacyclicity over the rings with infinite fields of residues,” Ukr. Mat. Zh., 68, No. 2, 202–216 (2016); English translation: Ukr. Math. J., 68, No. 2, 224–241 (2016).Google Scholar
  10. 10.
    J. W. S. Cassels and A. Fröhlich (editors), Algebraic Number Theory, Academic Press, London (1967).zbMATHGoogle Scholar
  11. 11.
    A. A. Suslin, “Homologies GL n , characteristic classes, and the Milnor К-theory,” Tr. Mat. Inst. Akad. Nauk SSSR, 165, 188–203 (1984).Google Scholar
  12. 12.
    H. Bass, “K-theory and stable algebra,” Publ. Math. Inst. Hautes Études Sci., No. 22, 489–544 (1964).zbMATHGoogle Scholar
  13. 13.
    H. Bass, J. Milnot, and J. P. Serre, “Solution of the congruence subgroup problem SL n (n ≥ 3) and SP 2n (n ≥ 2) ,” Publ. Math. Inst. Hautes Études Sci., No. 33, 421–499 (1967).CrossRefGoogle Scholar
  14. 14.
    W. Van der Kallen, “Homology stability for linear groups,” Invent. Math., No. 3, 269–295 (1980).Google Scholar
  15. 15.
    W. Van der Kallen, “Stability for K 2 of Dedekind rings of arithmetic type,” in: Lecture Notes in Mathematics, 854, Springer, Berlin (1981), pp. 217–249.Google Scholar
  16. 16.
    M. Kolster, “On injective stability for K 2 ,” in: Lecture Notes in Mathematics, 966, Springer, Berlin (1982), pp. 128–169.Google Scholar
  17. 17.
    M. Kolster, “Improvement of K 2 -stability under transitive actions of elementary groups,” J. Pure Appl. Algebra, 24, No. 3, 277–282 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J.-P. Serre, “Modules projectivs et espaces fibres a fibre vectorielle,” Semin. P. Dubreil, Fac. Sci. Paris, 231, 1–18 (1957–1958).Google Scholar
  19. 19.
    A. A. Suslin, “Stability in algebraic К-theory,” in: Lecture Notes in Mathematics, 966, Springer, Berlin (1982), pp. 304–334.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. R. Zainalov
    • 1
  1. 1.Samarkand State UniversitySamarkandUzbekistan

Personalised recommendations