Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 8, pp 1319–1325 | Cite as

Approximation of Periodic Functions of Many Variables by Functions of a Smaller Number of Variables in Orlicz Metric Spaces

  • Yu. A. Babich
  • T. F. Mikhailova
Brief Communications
  • 2 Downloads

For periodic functions of many variables, we propose a method for their approximation in the Orlicz spaces L(𝕋m). According to this method, the functions are approximated by the sums of functions of smaller number of variables each of which is piecewise-constant in one variable for fixed values of the other variables. A Jackson-type inequality is analyzed for these approximations in terms of the mixed module of continuity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Pichugov, “Young constants of the space L p ,Mat. Zametki, 43, No. 5, 604–614 (1988).MathSciNetzbMATHGoogle Scholar
  2. 2.
    I. M. Vinogradov, Foundations of the Number Theory [in Russian], Nauka, Moscow (1981).Google Scholar
  3. 3.
    K. V. Runovskii, “On the approximation of a family of linear polynomial operators in the spaces L p , 0 < p < 1,Mat. Sb., 185, No. 8, 81–102 (1994).Google Scholar
  4. 4.
    S. A. Pichugov, “On the Jackson theorem for periodic functions in spaces with integral metric,” Ukr. Mat. Zh., 52, No. 1, 122–133 (2000); English translation: Ukr. Math. J., 52, No. 1, 133–147 (2000).Google Scholar
  5. 5.
    S. A. Pichugov, “On the Jackson theorem for periodic functions in metric spaces with integral metric. II,” Ukr. Mat. Zh., 63, No. 11, 1524–1533 (2011); English translation: Ukr. Math. J., 63, No. 11, 1733–1744 (2012).Google Scholar
  6. 6.
    S. A. Pichugov, “Approximation of periodic functions by constants in the metric spaces φ(L),Ukr. Mat. Zh., 46, No. 8, 1095–1098 (1994); English translation: Ukr. Math. J., 46, No. 8, 1206–1209 (1994).Google Scholar
  7. 7.
    S. A. Pichugov, “Smoothness of functions in the metric spaces L 𝜓 ,Ukr. Mat. Zh., 64, No. 9, 1214–1232 (2012); English translation: Ukr. Math. J., 64, No. 9, 1382–1402 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yu. A. Babich
    • 1
  • T. F. Mikhailova
    • 1
  1. 1.Dnepropetrovsk National University of Railway TransportDniproUkraine

Personalised recommendations