Ukrainian Mathematical Journal

, Volume 70, Issue 8, pp 1205–1220 | Cite as

Entire Solutions of One Linear Implicit Differential-Difference Equation in Banach Spaces

  • S. L. Hefter
  • O. L. Piven’

We establish the existence and uniqueness conditions for the solution for the initial problem

$$ {Bu}^{\prime }(z)= Au\left(z+h\right)+f(z),\kern1em z\in \mathbb{C},\kern1em u(0)={u}_0 $$

in the classes of entire vector functions of exponential type. Closed linear operators A and B act on Banach spaces and can be degenerate. We present an example of application of abstract results to partial differential equations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York–London (1963).zbMATHGoogle Scholar
  2. 2.
    L. A. Vlasenko, Evolutionary Models with Implicit and Degenerate Differential Equations [in Russian], Sistemnye Tekhnologii, Dnepropetrovsk (2006).Google Scholar
  3. 3.
    S. G. Krein and M. I. Khazan, “Differential equations in Banach spaces,” in: VINITI Series in Mathematical Analysis [in Russian], Vol. 21, VINITI, Moscow (1983), pp. 130–264.Google Scholar
  4. 4.
    Yu. A. Mitropol’skii, A. M. Samoilenko, and D. I. Martynyuk, Systems of Evolutionary Equations with Periodic and Conditionally Periodic Coefficients [in Russian], Naukova Dumka, Kiev (1985).Google Scholar
  5. 5.
    A. D. Myshkis, Linear Differential Equations with Retarded Argument [in Russian], Nauka, Moscow (1972).Google Scholar
  6. 6.
    A. M. Samoilenko, M. I. Shkil’, and V. P. Yakovets’, Linear Systems of Differential Equations with Degenerations [in Ukrainian], Vyshcha Shkola, Kyiv (2000).Google Scholar
  7. 7.
    V. Yu. Slyusarchuk, Absolute Stability of Dynamical Systems with Aftereffects [in Ukrainian], Rivne State University of Water Management and Utilization of Natural Resources, Rivne (2003).Google Scholar
  8. 8.
    V. I. Fodchuk, Ya. I. Bihun, I. I. Klevchuk, I. M. Cherevko, and I. V. Yakimov, Regularly and Singularly Perturbed Functional-Differential Equations [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (1996).Google Scholar
  9. 9.
    W. Hahn, “Bericht ¨uber Differential – Dlfferenzengleichungen mit festen und veränderlichen Spannen,” Jahresbericht der Deutschen Mathematiker – Vereinigung, 57, No. 2, 55–84 (1954).Google Scholar
  10. 10.
    J. Hale, Theory of Functional Differential Equations, Springer, New York (1977).Google Scholar
  11. 11.
    S. L. Gefter, A. L. Piven, and A. S. Tanasichuk, “Operator Bruwier series and initial problem for a linear differential-difference equation in a Banach space,” Probl. Mat. Anal., 89, 3–10 (2017); English translation: J. Math. Sci., 226, Issue 4, 335–343 (2017).Google Scholar
  12. 12.
    S. L. Gefter and T. E. Stulova, “On entire solutions of exponential type for some implicit linear differential-difference equation in a Banach space,” Zap. Nauchn. Sem. POMI, 416, 91–97(2013); English translation: J. Math. Sci., 202, Issue 4, 541–545 (2014).Google Scholar
  13. 13.
    S. L. Gefter and T. E. Stulova, “On solutions of zero exponential type for some inhomogeneous differential-difference equations in a Banach space,” in: Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics and Statistics, 54 (2013), pp. 253–263.Google Scholar
  14. 14.
    N. I. Radbel’, “On the initial manifold and dissipativity of the Cauchy problem for the equation Ax′(t) + Bx(t) = 0,Differents. Uravn., 15, No. 6, 1142–1143 (1979).Google Scholar
  15. 15.
    A. G. Rutkas, “Cauchy problem for the equation Ax′(t) + Bx(t) = f(t),Differents. Uravn., 11, No. 11, 1996–2010 (1975).Google Scholar
  16. 16.
    A. G. Rutkas, “Spectral methods of investigation of degenerate differential-operator equations,” Sovr. Mat. Prilozh., 35, 48–64 (2005).Google Scholar
  17. 17.
    S. L. Campbell, Singular Systems of Differential Equations I, Pitman Publishing, San Francisco (1980).Google Scholar
  18. 18.
    L. A. Vlasenko and A. G. Rutkas, “On one class of functional-differential equations with nonatomic difference operator,” Mat. Zametki, 95, Issue 1, 37–49 (2014).Google Scholar
  19. 19.
    L. A. Vlasenko and A. G. Rutkas, “Optimal control by undamped Sobolev-type systems with delay,” Mat. Zametki, 102, Issue 3, 323–338 (2017).Google Scholar
  20. 20.
    A. Favini and L. Vlasenko, “Degenerate nonstationary differential equations with delay in Banach spaces,” J. Different. Equat., 192, No. 1, 93–110 (2003).CrossRefGoogle Scholar
  21. 21.
    L. A. Vlasenko, “On a class of neutral functional differential equations,” Funct. Different. Equat., 13, No. 2, 305–321 (2006).MathSciNetzbMATHGoogle Scholar
  22. 22.
    V. M. Horbachuk and M. L. Horbachuk, “Spaces of smooth and generalized vectors of the generator of an analytic semigroup and their applications,” Ukr. Mat. Zh., 69, No. 4, 478–509 (2017); English translation: 69, No. 4, 561–597 (2017).Google Scholar
  23. 23.
    M. L. Gorbachuk and V. I. Gorbachuk, “On well-posed solvability in some classes of entire functions of the Cauchy problem for differential equations in a Banach space,” Meth. Funct. Anal. Topology, 11, No. 2, 113–125 (2005).MathSciNetzbMATHGoogle Scholar
  24. 24.
    S. L. Hefter and T. E. Stulova, “On the well-posedness of a nonresonance operator-differential equation in the space of entire functions of exponential type,” Dop. Nats. Akad. Nauk Ukr., No. 9, 7–12 (2012).Google Scholar
  25. 25.
    O. Perron, “Über Bruwiersche Reihen,” Math. Z., 45, 127–141 (1939).MathSciNetCrossRefGoogle Scholar
  26. 26.
    E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, AMS Colloq. Publ., Providence, Rhode Island (1957).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. L. Hefter
    • 1
  • O. L. Piven’
    • 1
  1. 1.Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations