Ukrainian Mathematical Journal

, Volume 70, Issue 8, pp 1165–1175 | Cite as

Derivations of Gamma (Semi)Hyperrings

  • L. K. Ardekani
  • B. Davvaz

Differential Γ-(semi)hyperrings are Γ-(semi)hyperrings equipped with derivation, which is a linear unary function satisfying the Leibniz product rule. We introduce the notions of derivation and weak derivation on Γ-hyperrings and Γ-semihyperrings and obtain some important results related to these notions in a specific way.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Anvariyeh, S. Mirvakili, and B. Davvaz, “On Γ-hyperideals in Γ-semihypergroups,” Carpathian J. Math., 26, 11–23 (2010).MathSciNetzbMATHGoogle Scholar
  2. 2.
    W. E. Barnes, “On the Γ-rings of Nobusawa,” Pacific J. Math., 18, 411–422 (1966).MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Corsini, Prolegomena of Hypergroup Theory, Italy, Aviani Editor (1993).Google Scholar
  4. 4.
    P. Corsini and V. Leoreanu-Fotea, “Applications of hyperstructure theory,” Adv. Math., 5 (2003).Google Scholar
  5. 5.
    B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, Internat. Academic Press, USA (2007).Google Scholar
  6. 6.
    B. Davvaz, L. Zareyan, and V. Leoreanu-Fotea, “(3, 3)-ary differential rings,” Mediterran. J. Math., 9, 357–378 (2012).Google Scholar
  7. 7.
    S. O. Dehkordi and B. Davvaz, “A strong regular relation on Γ-semihyperrings,” J. Sci. Islam. Rep. Iran, 22, 257–266 (2011).MathSciNetGoogle Scholar
  8. 8.
    S. O. Dehkordi and B. Davvaz, “Γ-semihyperrings: approximations and rough ideals,” Bull. Malays. Math. Sci. Soc., 35, 1035–1047 (2012).MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. O. Dehkordi and B. Davvaz, “Ideal theory in Γ-semihyperrings,” Iran. J. Sci. Technol. Trans. A. Sci., 37, 251–263 (2013).MathSciNetGoogle Scholar
  10. 10.
    S. O. Dehkordi and B. Davvaz, “Γ-semihyperrings: ideals, homomorphisms, and regular relations,” Afr. Mat., 26, 849–861 (2015).MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Hedayati and B. Davvaz, “Fundamental relation on Γ-hyperrings,” Ars Combin., 100, 381–394 (2011).MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. Heidari, S. O. Dehkordi, and B. Davvaz, “Γ-semihypergroups and their properties,” Politeh. Univ. Bucharest Sci. Bull., Ser. A, Appl. Math. Phys., 72, 195–208 (2010).MathSciNetzbMATHGoogle Scholar
  13. 13.
    S. Huang and B. Davvaz, “Generalized derivations of rings and Banach algebras,” Comm. Algebra, 41, 1188–1194 (2013).MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. J. Jing, “On derivations of Γ-rings,” J. Qufu Norm. Univ., Nat. Sci., 13, 159–161 (1987).Google Scholar
  15. 15.
    S. Kyuno, “On prime Gamma rings,” Pacific J. Math., 75, 185–190 (1978).MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Kyuno, “Prime ideals in Gamma rings,” Pacific J. Math., 98, 375–379 (1982).MathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Posner, “Derivations in prime rings,” Proc. Amer. Math. Soc., 8, 1093–1100 (1975).MathSciNetCrossRefGoogle Scholar
  18. 18.
    F. Marty, “Sur une generalization de la notion de group,” in: Proc. of the Eighth Congress des Mathematiciens Scandinaves, Stockholm, Sweden (1934), pp. 45–49.Google Scholar
  19. 19.
    N. Nobusawa, “On a generalization of the ring theory,” Osaka J. Math., 1, 81–89 (1964).MathSciNetzbMATHGoogle Scholar
  20. 20.
    M. A. Ozturk, Y. B. Jun, and K. H. Kim, “On derivations of prime Gamma rings,” Tr. Inst. Math., 26, 317–327 (2002).MathSciNetzbMATHGoogle Scholar
  21. 21.
    M. K. Rao, “Γ-semiring,” Southeast Asian Bull. Math., 19, 49–54 (1995).Google Scholar
  22. 22.
    M. Sapanci and A. Nakajima, “Jordan derivations on completely prime gamma rings,” Math. Japonica, 46, No. 1, 47–51 (1997).MathSciNetzbMATHGoogle Scholar
  23. 23.
    M. Soyturk, “The commutativity in prime gamma rings with derivation,” Tr. Inst. Mat., 18, 149–155 (1994).MathSciNetzbMATHGoogle Scholar
  24. 24.
    T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, Florida (1994).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. K. Ardekani
    • 1
  • B. Davvaz
    • 1
  1. 1.Yazd UniversityYazdIran

Personalised recommendations