Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 3, pp 467–476 | Cite as

Continuity in the Parameter for the Solutions of One-Dimensional Boundary-Value Problems for Differential Systems of Higher Orders in Slobodetskii Spaces

  • H. O. Maslyuk
  • V. A. Mykhailets’
Article

We introduce the most general class of linear boundary-value problems for systems of ordinary differential equations of order r ≥ 2 whose solutions belong to the Slobodetskii space \( {W}_p^{s+r}\left(\left(a,b\right),{\mathbb{C}}^m\right), \) where m 2, s > 0, and p ∈ (1,∞). We also establish sufficient conditions under which the solutions of these problems are continuous functions of the parameter in the Slobodetskii space \( {W}_p^{s+r}\left(\left(a,b\right),{\mathbb{C}}^m\right). \)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. T. Kiguradze, “Boundary-value problems for systems of ordinary differential equations,” in: VINITI Series in Contemporary Problems of Mathematics. Latest Achievements [in Russian], 30, VINITI, Moscow (1987), pp. 3–103.Google Scholar
  2. 2.
    I. T. Kiguradze, Some Singular Boundary-Value Problems for Ordinary Differential Equations [in Russian], Tbilisi University, Tbilisi (1975).Google Scholar
  3. 3.
    T. I. Kodlyuk, V. A. Mikhailets, and N. V. Reva, “Limit theorems for one-dimensional boundary-value problems,” Ukr. Mat. Zh., 65, No. 1, 70–81 (2013); English translation: Ukr. Math. J., 65, No. 1, 77–90 (2013).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. A. Mikhailets, O. V. Pelekhata, and N. V. Reva, “Limit theorems for the solutions of boundary-value problems,” Ukr. Mat. Zh., 70, No. 2, 216–223 (2018); English translation: Ukr. Math. J., 70, No. 2, 243–251 (2018).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. A. Mikhailets and G. A. Chekhanova, “Limit theorems for general one-dimensional boundary-value problems,” J. Math. Sci., 204, No. 3, 333–342 (2015).MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. A. Mikhailets, A. A. Murach, and V. Soldatov, “Continuity in a parameter of solutions to generic boundary-value problems,” Electron. J. Qual. Theory Different. Equat., No. 87, 1–16 (2016).MathSciNetzbMATHGoogle Scholar
  7. 7.
    E. V. Hnyp, “Continuity of the solutions of one-dimensional boundary-value problems with respect to the parameter in the Slobodetskii spaces,” Ukr. Mat. Zh., 68, No. 6, 746–756 (2016); English translation: Ukr. Math. J., 68, No. 6, 849–861 (2016).MathSciNetCrossRefGoogle Scholar
  8. 8.
    E. V. Gnyp, T. I. Kodlyuk, and V. A. Mikhailets, “Fredholm boundary-value problems with parameter in Sobolev spaces,” Ukr. Mat. Zh., 67, No. 5, 584–591 (2015); English translation: Ukr. Math. J., 67, No. 5, 658–667 (2015).MathSciNetCrossRefGoogle Scholar
  9. 9.
    V. A. Soldatov, “On the continuity in a parameter for the solutions of boundary-value problems total with respect to the spaces C (n+r)[a, b],Ukr. Mat. Zh., 67, No. 5, 692–700 (2015); English translation: Ukr. Math. J., 67, No. 5, 785–794 (2015).Google Scholar
  10. 10.
    H. O. Maslyuk, “Continuity of the solutions of one-dimensional boundary-value problems in Hölder spaces with respect to the parameter,” Ukr. Mat. Zh., 69, No. 1, 83–91 (2017); English translation: Ukr. Math. J., 69, No. 1, 101–110 (2017).MathSciNetCrossRefGoogle Scholar
  11. 11.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB, Berlin (1978).zbMATHGoogle Scholar
  12. 12.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. 3. Pseudo-Differential Operators, Springer, Berlin (1985).zbMATHGoogle Scholar
  13. 13.
    V. A. Trenogin, Functional Analysis [in Russian], Nauka, Moscow (1980).Google Scholar
  14. 14.
    H. Cartan, Calcul Diff´erentiel. Formes Diff´erentielles, Herman, Paris (1967).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. O. Maslyuk
    • 1
  • V. A. Mykhailets’
    • 2
  1. 1.Sikorski “Kyiv Polytechnic Institute” Ukrainian National Technical UniversityKyivUkraine
  2. 2.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations