Ukrainian Mathematical Journal

, Volume 70, Issue 1, pp 84–100 | Cite as

Exact and Approximate Solutions of Spectral Problems for the Schrödinger Operator on (−∞, ∞) with Polynomial Potential

  • V. L. Makarov

New exact representations for the solutions of numerous one-dimensional spectral problems for the Schrödinger operator with polynomial potential are obtained by using a technique based on the functional-discrete (FD) method. In the cases where the ordinary FD-method is divergent, we propose to use its modification, which proves to be quite efficient. The obtained theoretical results are illustrated by numerical examples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Magyari, “Exact quantum-mechanical solutions for anharmonic oscillators,” Phys. Lett. A, 81, No. 2–3, 116–118 (1981).MathSciNetCrossRefGoogle Scholar
  2. 2.
    K. Banerjee, “General anharmonic oscillators,” Proc. Roy. Soc. London A, 364, No. 1717, 263–275 (1978).MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. N. Chaudhuri and M. Mondal, “Improved Hill determinant method: general approach to the quantum anharmonic oscillators,” Phys. Rev. A, 43, No. 7, 3241–3246 (1991).MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Adhikari, R. Dutt, and Y. P. Varshni, “Exact solutions for polynomial potentials using supersymmetry inspired factorization method,” Phys. Lett. A, 141, No. 1–2, 1–8 (1981).MathSciNetGoogle Scholar
  5. 5.
    Y.-M. Kao and T. F. Jiang, “Adomian’s decomposition method for eigenvalue problems,” Phys. Rev. E, 71, 036702 (2005).CrossRefGoogle Scholar
  6. 6.
    A. K. Roy, N. Gupta, and B. M. Deb, “Time-dependent quantum-mechanical calculation of ground and exited states of anharmonic and double-well oscillators,” Phys. Rev. A, 65, No. 1, 012109 (2001).CrossRefGoogle Scholar
  7. 7.
    A. Ronveaux (editor), Heun’s Differential Equations, Oxford Univ. Press, Oxford (1995).zbMATHGoogle Scholar
  8. 8.
    V. L. Makarov, “FD-method in spectral problems for the Schrödinger operator with polynomial potential on (−∞, +∞),Dop. Nats. Akad. Nauk Ukr., No. 11, 5–11 (2015).Google Scholar
  9. 9.
    V. L. Makarov, “On a functional-difference method of any order of accuracy for the solution of the Sturm–Liouville problem with piecewise smooth coefficients,” Dokl. Akad. Nauk SSSR, 1 (320), 34–39 (1991).Google Scholar
  10. 10.
    V. L. Makarov, “FD-method—exponential rate of convergence,” Zh. Obchysl.. Prykl. Mat., No. 82, 69–74 (1997).Google Scholar
  11. 11.
    G. Adomian, Solving Frontier Problems of Physics: the Decomposition Method, Kluwer Academic Publishers, Dordrecht (1994).CrossRefzbMATHGoogle Scholar
  12. 12.
    V. L. Makarov and N. M. Romanyuk, “New properties of the FD-method in its application to Sturm–Liouville problems,” Dop. Nats. Akad. Nauk Ukr., No. 2, 26–31 (2014).Google Scholar
  13. 13.
    F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (editors), NIST Digital Library of Mathematical Functions, Cambridge Univ. Press, New York (2010).Google Scholar
  14. 14.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1954).zbMATHGoogle Scholar
  15. 15.
    A. Zettl, Sturm–Liouville Theory, American Mathematical Society, Providence, RI (2005).zbMATHGoogle Scholar
  16. 16.
    J. D. Pryce, Numerical Solution of Sturm–Liouville Problems, Oxford Univ. Press, Oxford (1993).zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. L. Makarov
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations