Ukrainian Mathematical Journal

, Volume 70, Issue 1, pp 42–66 | Cite as

Lyapunov Functions in the Global Analysis of Chaotic Systems

  • G. A. Leonov

We present an overview of the development of the direct Lyapunov method in the global analysis of chaotic systems and describe three directions of application of the Lyapunov functions: in the methods of localization of global attractors, where the estimates of dissipativity in Levinson’s sense are obtained, in the problems of existence of homoclinic trajectories, and in the estimation of the dimensions of attractors. The efficiency of construction of Lyapunov-type functions is demonstrated. In particular, the Lyapunov dimension formula is proved for the attractors of the Lorentz system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. M. Lyapunov, General Problem of Stability of Motion. Collection of Works [in Russian], Gostekhizdat, Moscow (1950); English translation: A. M. Lyapunov, General Problem of Stability of Motion, CRC Press (1992).Google Scholar
  2. 2.
    J. La Salle and S. Lefschetz, Stability by Lyapunov’s Direct Method with Applications, Academic Press, New York (1961).zbMATHGoogle Scholar
  3. 3.
    W. Hahn, Theorie und Anwendungen der Direkten Methodes von Lyapunov, Springer, Berlin (1959).CrossRefGoogle Scholar
  4. 4.
    I. G. Malkin, Theory of Stability of Motion [in Russian], Nauka, Moscow (1966).Google Scholar
  5. 5.
    N. G. Chetaev, Stability of Motion [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  6. 6.
    N. N. Krasovskii, Some Problems of the Theory of Stability of Motion [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  7. 7.
    E. A. Barbashin, Lyapunov Functions [in Russian], Nauka, Moscow (1970).Google Scholar
  8. 8.
    T. Yoshizawa, “Lyapunov’s function and boundedness of solutions,” Funkc. Ekvacioj., 2, 95–142 (1959).zbMATHGoogle Scholar
  9. 9.
    N. Rouche, P. Habets, and M. Laloy, Stability Theory by Lyapunov’s Direct Method, Springer, New York (1977).CrossRefzbMATHGoogle Scholar
  10. 10.
    L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer, Berlin (1959).CrossRefzbMATHGoogle Scholar
  11. 11.
    S. Lefschetz, Stability of Nonlinear Control Systems, Academic Press, New York (1965).zbMATHGoogle Scholar
  12. 12.
    V. M. Kuntsevich and M. M. Lychak, Synthesis of Automatic Control Systems with the Use of Lyapunov Functions [in Russian], Nauka, Kiev (1977).zbMATHGoogle Scholar
  13. 13.
    V. V. Rumyantsev, “Method of Lyapunov functions in the theory of stability of motion,” in: Mechanics in the USSR for 50 Years [in Russian], 1 (1968), pp. 7–66.Google Scholar
  14. 14.
    G. A. Leonov, D. V. Ponomarenko, and V. B. Smirnova, Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications, World Scientific Publishing, Singapore (1996).CrossRefzbMATHGoogle Scholar
  15. 15.
    E. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric Sci., 20, 130–141 (1963).CrossRefzbMATHGoogle Scholar
  16. 16.
    J. Lu and G. Chen, “A new chaotic attractor coined,” Intern. J. Bifurcat. Chaos, 12, No. 3, 652–661 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific Publishing, Singapore (1998).CrossRefzbMATHGoogle Scholar
  18. 18.
    G. A. Leonov, A. I. Bunin, and N. Koksch, “Attractorlocalisierung des Lorenz system,” Z. Angew. Math. Mech., 67, No. 12, 649–656 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    G. Tigan and D. Opris, “Analysis of a 3D chaotic system,” Chaos, Solutions Fractals, 36, No. 5, 1315–1319 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    G. Tigan and D. Constyantinessu, “Heteroclinic orbits in T and Lu systems,” Chaos, Solutions Fractals, 42, No. 7 (2014).Google Scholar
  21. 21.
    Q. Yang and G. Chen, “A chaotic system with one saddle and two stable node-foci,” Intern. J. Bifurcat. Chaos, 18, 1393–1414 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    T. Shimizu and N. Morioka, “On the bifurcation of a symmetric limit cycle to an asymmetric one,” Phys. Lett. A, 76, No. 3–4, 201–204 (1980).MathSciNetCrossRefGoogle Scholar
  23. 23.
    G. A. Leonov, “Fishing principle for homoclinic and heteroclinic trajectories,” Nonlinear Dynam., 78, 2751–2758 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    F. Zhang, X. Liao, C. Mu, G. Zhang, and Y. A. Chen, “On global boundedness of the Chen system,” Discrete Contin. Dynam. Syst., Ser. B, 22, No. 4, 1673–1681 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    G. A. Leonov, B. R. Andrievskii, and R. N. Mokaev, “Asymptotic behavior of solutions of Lorenz-type systems. Analytic results and structures of computer errors,” Vestn. St.-Petersburg. Univ., Ser. 1, Mat. Mekh. Astronom., 4, No. 1, 25–37 (2017).Google Scholar
  26. 26.
    G. A. Leonov, “General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu, and Chen systems,” Phys. Lett. A, 376, No. 45, 3045–3050 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    G. A. Leonov, “Tricomi problem for the dynamical Shimizu–Morioka system,” Dokl. Ros. Akad. Nauk. Mat., 447, No. 6, 603–606 (2012).MathSciNetzbMATHGoogle Scholar
  28. 28.
    G. A. Leonov, “Criteria for the existence of homoclinic trajectories in Lu and Chen systems,” Dokl. Ros. Akad. Nauk. Mat., 449, No. 6, 634–638 (2013).Google Scholar
  29. 29.
    G. A. Leonov, “Rössler systems. Estimation of the dimension of attractors and homoclinic trajectories,” Dokl. Ros. Akad. Nauk. Mat., 456, No. 6, 442–444 (2014).Google Scholar
  30. 30.
    G. A. Leonov, “Bounds for attractors and the existence of homoclinic orbits in the Lorenz system,” J. Appl. Math. Mech., 65, No. 1, 19–32 (2001).MathSciNetCrossRefGoogle Scholar
  31. 31.
    G. A. Leonov, “Tricomi problem of the existence of homoclinic trajectories in dissipative systems,” Prikl. Mat. Mekh., 77, Issue 3, 410–420 (2013).Google Scholar
  32. 32.
    G. A. Leonov, “Cascade of bifurcations in Lorenz-like systems: birth of strange attractor, blue sky catastrophe bifurcation and nine homoclinic bifurcations,” Dokl. Math., 92, No. 2, 563–567 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    G. A. Leonov, “Necessary and sufficient conditions of the existence of homoclinic trajectories and cascade of bifurcations in Lorenzlike systems: birth of strange attractor and 9 homoclinic bifurcations,” Nonlin. Dynam., 84, No. 2, 1055–1062 (2016).CrossRefzbMATHGoogle Scholar
  34. 34.
    I. I. Ovsyannikov and D. V. Turaev, “Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model,” Nonlinearity, 30, 135–137 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    G. A. Leonov and R. N. Mokaev, “Homoclinic bifurcations of the merging strange attractors in the Lorenz-like system,” Intern. J. Bifurcat. Chaos (2018).Google Scholar
  36. 36.
    O. A. Ladyzhenskaya, “On the dynamical system generated by the Navier–Stokes equations,” Zap. Nauch. Sem. LOMI, 27, 91–114 (1972).MathSciNetGoogle Scholar
  37. 37.
    Yu. S. Il’yashenko, “Weakly contracting systems and attractors of the Galerkin approximations of the Navier–Stokes equations,” Usp. Mat. Nauk, 36, Issue 3, 243–244 (1981).Google Scholar
  38. 38.
    O. A. Ladyzhenskaya, “On the determination of minimum global attractors for the Navier–Stokes equations and other partial differential equations,” Usp. Mat. Nauk, 42, Issue 6, 25–60 (1987).Google Scholar
  39. 39.
    A. Douady and J. Oesterle, “Dimension de Hausdorff des attractors,” C. R. Acad. Sci. Paris, Ser. A, 290, No. 24, 1135–1138 (1980).MathSciNetzbMATHGoogle Scholar
  40. 40.
    F. R. Gantmacher, The Theory of Matrices, American Mathematical Society Chelsea Publ., New York (1959).zbMATHGoogle Scholar
  41. 41.
    V. A. Boichenko, G. A. Leonov, and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Teubner, Wiesbaden (2005).CrossRefzbMATHGoogle Scholar
  42. 42.
    V. A. Boichenko and G. A. Leonov, “Lyapunov functions, Lozinskii norms, and Hausdorff measure in the qualitative theory of differential equations,” Amer. Math. Soc. Transl., Ser. 2, 193, 1–26 (1999).MathSciNetzbMATHGoogle Scholar
  43. 43.
    G. A. Leonov, “Hausdorff–Lebesgue dimension of attractors,” Internat. J. Bifurcat. Chaos, 27, No. 10 (2017).Google Scholar
  44. 44.
    J. Kaplan and J. Yorke, “Chaotic behavior of multidimensional difference equations,” in: H. Peitgen and H. Walter (editors), Functional Differential Equations and Approximation of Fixed Points, Springer, Berlin (1979), pp. 204–227.CrossRefGoogle Scholar
  45. 45.
    A. Eden, C. Foias, and R. Temam, “Local and global Lyapunov exponents,” J. Dynam. Different. Equat., 3, No. 1, 133–177 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    G. A. Leonov, “Lyapunov dimension formulas for Henon and Lorenz attractors,” St. Petersburg Math. J., 13, 453–464 (2002).MathSciNetzbMATHGoogle Scholar
  47. 47.
    G. A. Leonov, “Lyapunov functions in the attractors dimension theory,” Appl. Math. Mech., 76, 129–141 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    A. Eden, “Local estimates for the Hausdorff dimension of an attractor,” J. Math. Anal. Appl., 150, No. 1, 100–119 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    C. Doering and J. Gibbon, “On the shape and dimension of the Lorenz attractor,” Dyn. Stability Syst., 10, No. 3, 255–268 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    G. A. Leonov, Strange Attractors and Classical Stability Theory, St. Petersburg University Press, St. Petersburg (2008).zbMATHGoogle Scholar
  51. 51.
    G. A. Leonov, “Formulas for the Lyapunov dimension of attractors of the generalized Lorenz system,” Dokl. Math., 450, No. 1, 13–18 (2013).MathSciNetGoogle Scholar
  52. 52.
    G. A. Leonov, N. V. Kuznetsov, N. A. Korzhemanova, and D. V. Kusakin, “Lyapunov dimension formula for the global attractor of the Lorenz system,” Comm. Nonlin. Sci. Numer. Simul., 41, 84–103 (2016).MathSciNetCrossRefGoogle Scholar
  53. 53.
    G. A. Leonov, A. Yu. Pogromsky, and D. V. Starkov, “Dimension formula for the Lorenz attractor,” Phys. Lett. A, 375, No. 8, 1179–1182 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    G. A. Leonov, “Lyapunov dimension formulas for Lorenz-like systems,” Internat. J. Bifurcat. Chaos, 26 (2016).Google Scholar
  55. 55.
    G. A. Leonov and M. S. Poltinnikova, “On the Lyapunov dimension of an attractor of the Chirikov dissipative mapping,” Tr. Sankt-Petersburg. Mat. Obshch., 10, 186–198 (2002).Google Scholar
  56. 56.
    G. A. Leonov and T. A. Alekseeva, “Estimation of the Lyapunov dimension of attractors in the generalized Rössler systems,” Vestn. Sankt-Petersburg. Univ., Ser. 1, Mat. Mekh. Astronom., 1(59), Issue 4, 544–550 (2014).Google Scholar
  57. 57.
    G. A. Leonov and T. N. Mokaev, “Lyapunov dimension formula for the attractor of the Glukhovsky–Dolzhansky system,” Dokl. Math., 93, No. 1, 42–45 (2016).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. A. Leonov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations