Advertisement

Ukrainian Mathematical Journal

, Volume 70, Issue 1, pp 5–29 | Cite as

Bounded Solutions of Evolutionary Equations

  • O. A. Boichuk
  • V. P. Zhuravl’ov
  • O. O. Pokutnyi
Article
  • 21 Downloads

We study the problems of existence and representations of the solutions bounded on the entire axis for both linear and nonlinear differential equations with unbounded operator coefficients in the Fréchet and Banach spaces under the condition of exponential dichotomy on the semiaxes of the corresponding homogeneous equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Coppel, “Dichotomies and reducibility,” J. Different. Equat., 3, 500–521 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    R. Sacker and G. Sell, “Existence of dichotomies and invariant splittings for linear differential systems, II,” J. Different. Equat., 22, 478–496 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. J. Sacker, “Existence of dichotomies and invariant splittings for linear differential systems, IV,” J. Different. Equat., 27, 106–137 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. J. Sacker, “The splitting index for linear differential systems,” J. Different. Equat., 33, 368–405 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yu. A. Mitropol’skii, A. M. Samoilenko, and V. L. Kulik, Investigation of the Dichotomy of Linear Systems of Differential Equations with the Use of Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  6. 6.
    Yu. L. Daletskii and M. G. Krein, Stability of the Solutions of Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1970).Google Scholar
  7. 7.
    J. L. Massera and J. J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York (1966).zbMATHGoogle Scholar
  8. 8.
    K. J. Palmer, “Exponential dichotomies and transversal homoclinic points,” J. Different. Equat., 55, 225–256 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. A. Boichuk, “Solutions of weakly nonlinear differential equations bounded on the whole line,” Nelin. Kolyv., 2, No. 1, 3–10 (1999).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. A. Boichuk and V. F. Zhuravlev, “Dichotomy on semiaxes and the solutions of linear systems with delay bounded on the entire axis,” Nelin. Kolyv., 18, No. 4, 431–445 (2015); English translation: J. Math. Sci., 220, No. 4, 377–393 (2017).Google Scholar
  11. 11.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, VSP, Utrecht (2004).CrossRefzbMATHGoogle Scholar
  12. 12.
    A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, 2nd Edn., De Gruyter, Berlin (2016).CrossRefzbMATHGoogle Scholar
  13. 13.
    D. Henry, Geometric Theory of Semilinear Parabolic Equations [Russian translation], Mir, Moscow (1985).Google Scholar
  14. 14.
    H. M. Rodrigues and J. G. Ruas-Filho, “Evolution equations: dichotomies, and the Fredholm alternative for bounded solutions,” J. Different. Equat., 119, Issue 2, 263–283 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. G. Baskakov, “On the invertibility and Fredholm property of parabolic differential operators,” Dokl. Ros. Akad. Nauk, 383, No. 5, 583–585 (2002).MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. G. Baskakov, “On the invertibility and Fredholm property of difference operators,” Mat. Zametki, 67, No. 6, 816–827 (2000).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. G. Baskakov, “On the differential and difference Fredholm operators,” Dokl. Ros. Akad. Nauk, 416, No. 2, 156–160 (2007).Google Scholar
  18. 18.
    Yu. Latushkin and Yu. Tomilov, “Fredholm differential operators with unbounded coefficients,” J. Different. Equat., 208, 388–429 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. A. Boichuk and A. A. Pokutnyi, “Bounded solutions of linear differential equations in a Banach space,” Nelin. Kolyv., 9, No. 1, 3–14 (2006); English translation: Nonlin. Oscillat., 9, No. 1, 1–12 (2006).Google Scholar
  20. 20.
    O. A. Boichuk and O. O. Pokutnyi, “Bounded solutions of weakly nonlinear differential equations in a Banach space,” Nelin. Kolyv., 11, No. 2, 151–159 (2008); English translation: Nonlin. Oscillat., 11, No. 2, 158–167 (2008).Google Scholar
  21. 21.
    O. O. Pokutnyi, “Generalized bounded solutions of linear evolutionary equations in locally convex spaces,” Zh. Vychisl. Mat. Mat. Fiz., 2(98), 35–40 (2009).Google Scholar
  22. 22.
    O. O. Pokutnyi, “Approximation of generalized bounded solutions of evolutionary equations with unbounded operator,” Nelin. Kolyv., 14, No. 1, 93–99 (2011); English translation: Nonlin. Oscillat., 14, No. 1, 95–101 (2011).Google Scholar
  23. 23.
    S. G. Krein, Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar
  24. 24.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control [in Russian], Nauka, Moscow (1979).Google Scholar
  25. 25.
    Ya. V. Radyno, Linear Equations and Bornology [in Russian], Belorusskii Gosudarstvennyi Universitet, Minsk (1982).Google Scholar
  26. 26.
    A. P. Robertson and W. J. Robertson, Topological Vector Spaces, Cambridge Univ. Press, London (1964).zbMATHGoogle Scholar
  27. 27.
    A. A. Boichuk and A. A. Pokutnyi, “Perturbation theory of operator equations in the Fréchet and Hilbert spaces,” Ukr. Mat. Zh., 67, No. 9, 1181–1188 (2015); English translation: Ukr. Math. J., 67, No. 9, 1327–1335 (2016).Google Scholar
  28. 28.
    A. A. Boichuk and A. A. Pokutnyi, “Exponential dichotomy and bounded solutions of differential equations in the Fréchet space,” Ukr. Mat. Zh., 66, No. 12, 1587–1597 (2014); English translation: Ukr. Math. J., 66, No. 12, 1781–1792 (2015).Google Scholar
  29. 29.
    R. J. Sacker and G. R. Sell, “Dichotomies for linear evolutionary equations in Banach spaces,” J. Different. Equat., 113, 17–67 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York (1983).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. A. Boichuk
    • 1
  • V. P. Zhuravl’ov
    • 2
  • O. O. Pokutnyi
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine
  2. 2.Zhytomyr National Agricultural-Economical UniversityZhytomyrUkraine

Personalised recommendations