Advertisement

City dwelling wild bees: how communal gardens promote species richness

  • Julia LannerEmail author
  • Sophie Kratschmer
  • Božana Petrović
  • Felix Gaulhofer
  • Harald Meimberg
  • Bärbel Pachinger
Article
  • 27 Downloads

Abstract

Urban areas consist of wide expanses of impervious surfaces which are known to negatively affect insect biodiversity in general, but green spaces within cities have the potential to provide necessary habitat and foraging resources. Although, communal gardens were primarily intended to provide fresh, regional food to denizens, these green islands also host a surprisingly high number of wild bee species.

The gardens were characterized based on structural elements such as flower frequency, the relative percentage of lawn, trees, shrubs, planted crops and infrastructure (e.g. seating possibilities or garden houses). Further, the effects of different landscape structures surrounding the gardens and distance to the city center were analyzed on the total wild bee species richness and functional traits. Focusing on these putative influencing factors, statistical analyses calculating random decision forests along with generalized linear mixed models were applied. With 113 observed wild bee species, communal gardens provide habitat for a quarter of all known species in Vienna. In conclusion, results revealed that only elements within the gardens had an effect on species richness, with flower frequency as the major positive driver. The examined communal gardens promote and conserve wild bees independent from the location within the city or garden size. Furthermore, these green patches are important sanctuaries, hosting rare and threatened species as well as remarkably special wild bee communities.

Keywords

Urban agriculture Pollinator Flower frequency Life history traits Apiformes 

Notes

Acknowledgements

First of all, we want to thank the gardeners for their support and interest in this project. Furthermore, we wish to thank Andreas Werner Ebmer for the confirmation of the determination of Halictus tectus, Sabine Schoder for assisting with the identification of difficult Hylaeus species, Monika Kriechbaum with the determination of certain plant species and David Horner for proof reading.

Author contribution

JL wrote the manuscript and along with BäPa conceived the original idea and identified the specimens on species level. Field work was conducted by JL and FG in the context of FG’s Bachelor thesis. SK performed the statistical computations with R. BoPe contributed the GIS results. All authors discussed the results and contributed to the final version of the manuscript.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahrné K, Bengtsson J, Elmqvist T (2009) Bumble Bees (Bombus spp) along a Gradient of Increasing Urbanization. PLoS One 4:e5574.  https://doi.org/10.1371/journal.pone.0005574 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alaimo K, Reischl TM, Allen JO (2010) Community gardening, neighborhood meetings, and social capital. J Commun Psychol 38:497–514.  https://doi.org/10.1002/jcop.20378 CrossRefGoogle Scholar
  3. Amiet F (1996) Apidae, 1. Teil. Allgemeiner Teil, Gattungsschlüssel, die Gattung Apis, Bombus und Psithyrus. Centre suisse de cartographie de la faune: Schweizerische Entomologische Gesellschaft, NeuchâtelGoogle Scholar
  4. Amiet F (ed) (2001) Apidae. 3: Halictus, Lasioglossum. Centre suisse de cartographie de la faune: Schweizerische Entomologische Gesellschaft, NeuchâtelGoogle Scholar
  5. Amiet F, Krebs A (2014) Bienen Mitteleuropas. Gattungen, Lebensweise, Beobachtungen, 2nd edn. Haupt Natur Verlag, BernGoogle Scholar
  6. Amiet F, Herrmann M, Müller A, Neumeyer R (2004) Apidae. 4: Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. NeuchâtelGoogle Scholar
  7. Andersson E, Barthel S, Ahrné K (2007) Measuring social-ecological dynamics behind the generation of ecosystem services. Ecol Appl 17:1267–1278.  https://doi.org/10.1890/06-1116.1 CrossRefPubMedGoogle Scholar
  8. Baldock KCR, Goddard MA, Hicks DM et al (2019) A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat Ecol Evol 3:363–373.  https://doi.org/10.1038/s41559-018-0769-y CrossRefPubMedPubMedCentralGoogle Scholar
  9. Banaszak-Cibicka W (2014) Are urban areas suitable for thermophilic and xerothermic bee species (Hymenoptera: Apoidea: Apiformes)? Apidologie 45:145–155.  https://doi.org/10.1007/s13592-013-0232-7 CrossRefGoogle Scholar
  10. Banaszak-Cibicka W, Żmihorski M (2012) Wild bees along an urban gradient: winners and losers. J Insect Conserv 16:331–343.  https://doi.org/10.1007/s10841-011-9419-2 CrossRefGoogle Scholar
  11. Banaszak-Cibicka W, Ratyńska H, Dylewski Ł (2016) Features of urban green space favourable for large and diverse bee populations (Hymenoptera: Apoidea: Apiformes). Urban For Urban Green 20:448–452.  https://doi.org/10.1016/j.ufug.2016.10.015 CrossRefGoogle Scholar
  12. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting Linear Mixed-Effects Models using lme4. J Stat Softw 67:1–48Google Scholar
  13. Biesmeijer JC (2006) Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313:351–354.  https://doi.org/10.1126/science.1127863 CrossRefPubMedGoogle Scholar
  14. Bogusch P, Straka J (2012) Review and identification of the cuckoo bees of central Europe (Hymenoptera: Halictidae: Sphecodes). Zootaxa:1–41Google Scholar
  15. Bogusch P, Kratochvil L, Jakub S (2006) Generalist cuckoo bees (Hymenoptera: Apidae: Sphecodes) are species-specialist at the individual level. Behav Ecol Sociobiol 60:422–429CrossRefGoogle Scholar
  16. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc Urban Plan 97:147–155.  https://doi.org/10.1016/j.landurbplan.2010.05.006 CrossRefGoogle Scholar
  17. Braaker S, Ghazoul J, Obrist MK, Moretti M (2014) Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95:1010–1021.  https://doi.org/10.1890/13-0705.1 CrossRefPubMedGoogle Scholar
  18. Environmental Systems Research Institute (2016) Geodatenviewer der Stadtvermessung Wien. Magistrat der Stadt Wien (MA41), 2015Google Scholar
  19. Falk S (2015) Field Guide to the Bees of Great Britain and Ireland. British Wildlife Field Guides, BloomsburyGoogle Scholar
  20. Firth C, Maye D, Pearson D (2011) Developing “community” in community gardens. Local Environ 16:555–568.  https://doi.org/10.1080/13549839.2011.586025 CrossRefGoogle Scholar
  21. Fischer LK, Eichfeld J, Kowarik I, Buchholz S (2016) Disentangling urban habitat and matrix effects on wild bee species. PeerJ 4:e2729.  https://doi.org/10.7717/peerj.2729 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Forman RTT (1995) Some general principles of landscape and regional ecology. Landsc Ecol 10:133–142.  https://doi.org/10.1007/BF00133027 CrossRefGoogle Scholar
  23. Fortel L, Henry M, Guilbaud L et al (2014) Decreasing Abundance, Increasing Diversity and Changing Structure of the Wild Bee Community (Hymenoptera: Anthophila) along an Urbanization Gradient. PLoS One 9:e104679.  https://doi.org/10.1371/journal.pone.0104679 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gallegos Torell Å, Glimskär A (2009) Computer-aided calibration for visual estimation of vegetation cover. J Veg Sci 20:973–983.  https://doi.org/10.1111/j.1654-1103.2009.01111.x CrossRefGoogle Scholar
  25. Gathmann A, Tscharntke T (2002) Foraging ranges of solitary bees. J Anim Ecol 7:757–764CrossRefGoogle Scholar
  26. Gokcezade J, Gereben-Krenn B-A, Neumayer J, Krenn H (2010) Feldbestimmungsschlüssel für die Hummeln Österreichs, Deutschlands und der Schweiz (Hymenoptera, Apidae). Linzer biologischer Beitrag 42:5–42Google Scholar
  27. Gosek J, Ruszkowski A, Kaczmarska K (1995) Food plants and an economic importance of Hylaeus species of subgenera Spatulariella Popov, Abrupta Popov and Koptogaster Alfken (Hymenoptera, Colletidae). Pszczelnicze Zeszyty Naukowe 39:265–272Google Scholar
  28. Goulson D, Lye GC, Darvill B, Words K (2008) Decline and Conservation of Bumble Bees. Annu Rev Entomol 53:191–208CrossRefGoogle Scholar
  29. Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global Change and the Ecology of Cities. Science 319:756–760.  https://doi.org/10.1126/science.1150195 CrossRefPubMedGoogle Scholar
  30. Guitart D, Pickering C, Byrne J (2012) Past results and future directions in urban community gardens research. Urban For Urban Green 11:364–373.  https://doi.org/10.1016/j.ufug.2012.06.007 CrossRefGoogle Scholar
  31. Gunnarsson B, Federsel LM (2014) Bumblebees in the city: abundance, species richness and diversity in two urban habitats. J Insect Conserv 18:1185–1191.  https://doi.org/10.1007/s10841-014-9729-2 CrossRefGoogle Scholar
  32. Gusenleitner F, Schwarz M, Mazzucco K (2012) Apidae (Insecta: Hymenoptera). In: Schuster R (ed) Schuster R (ed) Biosystematices and Ecology Series No. 29: Checklisten der Fauna Österreichs, No. 6. Verlag der Österreichsichen Akademie der Wissenschaften, WienGoogle Scholar
  33. Hennig EI, Ghazoul J (2012) Pollinating animals in the urban environment. Urban Ecosyst 15:149–166.  https://doi.org/10.1007/s11252-011-0202-7 CrossRefGoogle Scholar
  34. Hernandez JL, Frankie GW, Thorp RW (2009) Ecology of Urban Bees: A Review of Current Knowledge and Directions for Future Study. Cities and the Environment 2:1–15. doi:  https://doi.org/10.15365/cate.2132009 CrossRefGoogle Scholar
  35. Himpele K (2018) Wien in Zahlen 2018. MA 23 Wirtschaft, Arbeit und Statistik, Wien.Google Scholar
  36. Hofmann MM, Zohner CM, Renner SS (2019) Narrow habitat breadth and late-summer emergence increases extinction vulnerability in Central European bees. Proc R Soc B Biol Sci 286:20190316.  https://doi.org/10.1098/rspb.2019.0316 CrossRefGoogle Scholar
  37. Holland L (2004) Diversity and connections in community gardens: a contribution to local sustainability. Local Environ 9:285–305.  https://doi.org/10.1080/1354983042000219388 CrossRefGoogle Scholar
  38. Holzschuh A, Dormann CF, Tscharntke T, Steffan-Dewenter I (2013) Mass-flowering crops enhance wild bee abundance. Oecologia 172:477–484.  https://doi.org/10.1007/s00442-012-2515-5 CrossRefPubMedGoogle Scholar
  39. Hong W, Guo R, Su M et al (2017) Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 62:316–325.  https://doi.org/10.1016/j.landusepol.2017.01.010 CrossRefGoogle Scholar
  40. Hothorn T, Hornik K, Strobl C, Zeileis A (2018) Package “party” A Laboratory for Recursive Partytioning 1.3–1. http://party.R-forge.R-project.org
  41. Hunter MR, Hunter MD (2008) Designing for conservation of insects in the built environment. Insect Conserv Divers 1:189–196.  https://doi.org/10.1111/j.1752-4598.2008.00024.x CrossRefGoogle Scholar
  42. Jauker F, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc Ecol 24:547–555.  https://doi.org/10.1007/s10980-009-9331-2 CrossRefGoogle Scholar
  43. Kadas G (2006) Rare Invertebrates Colonizing Green Roofs in London. Urban Habitats 4:66–86Google Scholar
  44. Kingsley JY, Townsend M, Henderson-Wilson C (2009) Cultivating health and wellbeing: members’ perceptions of the health benefits of a Port Melbourne community garden. Leis Stud 28:207–219.  https://doi.org/10.1080/02614360902769894 CrossRefGoogle Scholar
  45. Kovács-Hostyánszki A, Haenke S, Batáry P et al (2013) Contrasting effects of mass-flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecol Appl 23:1938–1946.  https://doi.org/10.1890/12-2012.1 CrossRefPubMedGoogle Scholar
  46. Kratschmer S, Kriechbaum M, Pachinger B (2018) Buzzing on top: Linking wild bee diversity, abundance and traits with green roof qualities. Urban Ecosyst 21:429–446.  https://doi.org/10.1007/s11252-017-0726-6 CrossRefGoogle Scholar
  47. Leonhardt SD, Gallai N, Garibaldi LA et al (2013) Economic gain, stability of pollination and bee diversity decrease from southern to northern Europe. Basic Appl Ecol 14:461–471.  https://doi.org/10.1016/j.baae.2013.06.003 CrossRefGoogle Scholar
  48. Lorenz S, Stark K (2015) Saving the honeybees in Berlin? A case study of the urban beekeeping boom. Environ Sociol 1:116–126.  https://doi.org/10.1080/23251042.2015.1008383 CrossRefGoogle Scholar
  49. Lowenstein DM, Matteson KC, Minor ES (2015) Diversity of wild bees supports pollination services in an urbanized landscape. Oecologia 179:811–821.  https://doi.org/10.1007/s00442-015-3389-0 CrossRefPubMedGoogle Scholar
  50. Madlener N (2007) Verein Gartenpolylog - Gaertnerinnen der Welt kooperieren - Gemeinschaftsgaerten. https://gartenpolylog.org/de/home. .
  51. Magistrat der Stadt Wien (2019) Bienenvölker in Wien. In: Stadt Wien. https://www.wien.gv.at/umwelt-klimaschutz/bienen-wien.html. .
  52. Makinson JC, Threlfall CG, Latty T (2017) Bee-friendly community gardens: Impact of environmental variables on the richness and abundance of exotic and native bees. Urban Ecosyst 20:463–476.  https://doi.org/10.1007/s11252-016-0607-4 CrossRefGoogle Scholar
  53. Matteson KC, Langellotto GA (2010) Determinates of inner city butterfly and bee species richness. Urban Ecosyst 13:333–347.  https://doi.org/10.1007/s11252-010-0122-y CrossRefGoogle Scholar
  54. Matteson KC, Ascher JS, Langellotto GA (2008) Bee Richness and Abundance in New York City Urban Gardens. Ann Entomol Soc Am 101:140–150.  https://doi.org/10.1603/0013-8746(2008)101[140:BRAAIN]2.0.CO;2 CrossRefGoogle Scholar
  55. Mazerolle M (2017) AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.1–1. https://cran.r-project.org/package=AICcmodavg
  56. Michener C (2007) The Bees of the World, 2nd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  57. Motulsky H, Christopoulos A (n.d.) Fitting Models to Biological Data using Linear and Nonlinear Regression. 351Google Scholar
  58. Müller A, Kuhlmann M (2008) Pollen hosts of western palaearctic bees of the genus Colletes (Hymenoptera: Colletidae): the Asteraceae paradox: Pollen hosts of Colletes bees. Biol J Linn Soc 95:719–733.  https://doi.org/10.1111/j.1095-8312.2008.01113.x CrossRefGoogle Scholar
  59. Müller A, Diener S, Schnyder S et al (2006) Quantitative pollen requirements of solitary bees: Implications for bee conservation and the evolution of bee–flower relationships. Biol Conserv 130:604–615.  https://doi.org/10.1016/j.biocon.2006.01.023 CrossRefGoogle Scholar
  60. Norton BA, Coutts AM, Livesley SJ et al (2015) Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138.  https://doi.org/10.1016/j.landurbplan.2014.10.018 CrossRefGoogle Scholar
  61. Pachinger B, Hölzler G (2006) Die Wildbienen (Hymenoptera, Apidae) der Wiener Donauinsel. Beiträge zur Entomofaunistik 7:119–148Google Scholar
  62. Pachinger B, Neumüller U, Eckl L-M et al (2014) Friedhöfe als Rückzugsraum für Wildbienen (Hymenoptera: Apidae) in der Grossstadt Wien. Beiträge zur Entomofaunistik 15:81–93Google Scholar
  63. Pawelek JC, Frankie GW, Thorp RW, Przybylski M (2009) Modification of a Community Garden to Attract Native Bee Pollinators in Urban San Luis Obispo, California. Cities Environ 2:1–20CrossRefGoogle Scholar
  64. Pinheiro MHO, De Neto LCA, Monteiro R (2006) Urban Areas and Isolated Remnants of Natural Habitats: An Action Proposal for Botanical Gardens. Biodivers Conserv 15:2747–2764.  https://doi.org/10.1007/s10531-005-1133-5 CrossRefGoogle Scholar
  65. Potter A, LeBuhn G (2015) Pollination service to urban agriculture in San Francisco, CA. Urban Ecosyst 18:885–893.  https://doi.org/10.1007/s11252-015-0435-y CrossRefGoogle Scholar
  66. R Core Development Team (2016) A Language and Environment for Statistical Computing. V 3.3.2 R Foundation for Statistical Computing. ViennaGoogle Scholar
  67. Ramalho CE, Hobbs RJ (2012) Time for a change: dynamic urban ecology. Trends Ecol Evol 27:179–188.  https://doi.org/10.1016/j.tree.2011.10.008 CrossRefPubMedGoogle Scholar
  68. Samways MJ (2018) Insect Conservation for the Twenty-First Century. In: Shah MM, Sharif U (eds) Insect Science-Diversity. Conservation and Nutrition, InTechOpen, pp 19–41Google Scholar
  69. Sánchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: A review of its drivers. Biol Conserv 232:8–27.  https://doi.org/10.1016/j.biocon.2019.01.020 CrossRefGoogle Scholar
  70. ScheuchI E (1995) Illustrierte Bestimmungstabellen der Wildbienen Deutschlands und Österreichs. Band 1: Anthophoridae. Eigenverlag, Velden.Google Scholar
  71. Scheuchl E (1996) Illustrierte Bestimmungstabellen der Wildbienen Deutschlands und Österreichs. Bd. 2: Megachilidae - Melittidae. Eigenverlag, VeldenGoogle Scholar
  72. Scheuchl E, Willner W (2016) Taschenlexikon der Wildbienen Mitteleuropas. Alle Arten im Porträt, Quelle & Meyer Verlag, WiebelsheimGoogle Scholar
  73. Schmid-Egger C, Scheuchl E (1997) Illustrierte Bestimmungstabellen der Wildbienen Deutschlands und Österreichs. Bd. 3: Andrenidae. Eigenverlag, VeldenGoogle Scholar
  74. Sedivy C, Dorn S (2014) Towards a sustainable management of bees of the subgenus Osmia (Megachilidae; Osmia) as fruit tree pollinators. Apidologie 45:88–105.  https://doi.org/10.1007/s13592-013-0231-8 CrossRefGoogle Scholar
  75. Sheffield C, Pindar A, Packer L, Kevan P (2013) The potential of cleptoparasitic bees as indicator taxa for assessing bee communities. Apidologie 44:501–510.  https://doi.org/10.1007/s13592-013-0200-2 CrossRefGoogle Scholar
  76. Sirohi MH, Jackson J, Edwards M, Ollerton J (2015) Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). J Insect Conserv 19:487–500.  https://doi.org/10.1007/s10841-015-9769-2 CrossRefGoogle Scholar
  77. Smith RM, Warren PH, Thompson K, Gaston KJ (2006) Urban domestic gardens (VI): environmental correlates of invertebrate species richness. Biodivers Conserv 15:2415–2438.  https://doi.org/10.1007/s10531-004-5014-0 CrossRefGoogle Scholar
  78. Stange E, Zulian G, Rusch G et al (2017) Ecosystem services mapping for municipal policy: ESTIMAP and zoning for urban beekeeping. One Ecosyst 2:e14014.  https://doi.org/10.3897/oneeco.2.e14014 CrossRefGoogle Scholar
  79. Tommasi D, Miro A, Higo HA, Winston ML (2004) Bee diversity and abundance in an urban setting. Can Entomol 136:851–869.  https://doi.org/10.4039/n04-010 CrossRefGoogle Scholar
  80. United Nations (2018) World Urbanization Prospects: The 2018 Revision. Department of Economic and Social Affairs/ Population DivisionCrossRefGoogle Scholar
  81. Wastian L, Unterweger PA, Betz O (2016) Influence of the reduction of urban lawn mowing on wild bee diversity (Hymenoptera, Apoidea). J Hymenopt Res 49:51–63.  https://doi.org/10.3897/JHR.49.7929 CrossRefGoogle Scholar
  82. Werrell PA, Langellotto GA, Morath SU, Matteson KC (2009) The Influence of Garden Size and Floral Cover on Pollen Deposition in Urban Community Gardens. Cities Environ 2:1–16CrossRefGoogle Scholar
  83. Westrich P (1989) Die Wildbienen Baden-Württembergs: Allgemeiner Teil. Lebensräume, Verhalten, Ökologie und Schutz. Eugen Ulmer GmbH & Co., StuttgartGoogle Scholar
  84. Westrich P (2018) Die Wildbienen Deutschlands. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  85. Wiesbauer H (2017) Wilde Bienen. Biologie - Lebensraumdynamik am Beispiel Österreich - Artenporträts, 1. Auflage. Eugen Ulmer KG, StuttgartGoogle Scholar
  86. Wilkaniec Z, Giejdasz K (2003) Suitability of nesting substrates for the cavity-nesting bee Osmia rufa. J Apic Res 42:29–31.  https://doi.org/10.1080/00218839.2003.11101084 CrossRefGoogle Scholar
  87. ZAMG (2017) Klimaspiegel Wien Innere Stadt für 2017. ZAMG - Zentralanstalt für Meterologie und Geodynamik, In https://www.zamg.ac.at/cms/de/klima/klimauebersichten/jahrbuch. Google Scholar
  88. Zettel H, Ockermüller E, Wiesbauer H et al (2015) Kommentierte Liste der aus Wien (Österreich) nachgewiesenen Bienenarten (Hymenoptera: Apidae). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 67:137–194Google Scholar
  89. Zettel H, Zimmermann D, Wiesbauer H (2016) Ergänzungen zur Bienenfauna (Hymenoptera: Apidae) von Wien, Österreich. Beiträge zur Entomofaunistik 17:85–107Google Scholar
  90. Zhao C, Sander HA, Hendrix SD (2019) Wild bees and urban agriculture: assessing pollinator supply and demand across urban landscapes. Urban Ecosyst 22:455–470.  https://doi.org/10.1007/s11252-019-0826-6 CrossRefGoogle Scholar
  91. Zurbuchen A, Müller A (2012) Wildbienenschutz- von der Wissenschaft zur Praxis. Zürich, Bristol-Stiftung, Bern, Stuttgart, WienGoogle Scholar
  92. Zurbuchen A, Landert L, Klaiber J et al (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676.  https://doi.org/10.1016/j.biocon.2009.12.003 CrossRefGoogle Scholar
  93. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems: Data exploration. Methods Ecol Evol 1:3–14.  https://doi.org/10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Integrative Nature Conservation ResearchViennaAustria

Personalised recommendations