Advertisement

Activity patterns and temporal niche partitioning of dogs and medium-sized wild mammals in urban parks of Xalapa, Mexico

  • Isac Mella-Méndez
  • Rafael Flores-PeredoEmail author
  • Jairo Pérez-Torres
  • Sergio Hernández-González
  • Dino Ulises González-Uribe
  • Beatriz del Socorro Bolívar-Cimé
Article

Abstract

Free-ranging domestic dogs are the world most common exotic carnivore species that could negatively interact with the native wildlife as predators, competitors, and disease vectors. Their generalist habits have allowed them to be present in a large number of urban parks, which are the habitat for wild mammal species, some of these animals are restricted to these areas. Moreover, dogs can perform activities alone or in a group during day and night time, having a wide temporal niche. However, the issues related to activity patterns overlap and temporal niche breadth between dogs and wild mammals in urban parks are still poorly known and have not been studied in deep. In this investigation, we evaluated the activity patterns, the temporal niche breadth, and the activity patterns overlap between medium-sized wild mammals (MSWM) and dogs using trap cameras in five urban parks in Xalapa, Veracruz. Mexico. During March to August 2014, there were taken 928 photo-captures of MSWM and dogs (720 trap nights). The activity patterns of MSWM were bimodal (two activity peaks), being more active during night time. MSWM showed low temporal niche breadth versus dogs. Five species of MSWM overlap their activity patterns with dogs in five urban parks. Didelphis marsupialis and Urocyon cinereoargenteus were the species with the greatest overlap regarding dogs, finding some individuals of this species lifeless in the studied sites. Our results show the need to perform studies that assess the effect of this temporal overlap on the biology, behavior, and permanence of these species in urban parks.

Keywords

Activity patterns Camera traps Domestic dogs Urban ecology 

Notes

Acknowledgements

The National Council for Science and Technology awarded a postgraduate scholarship (175058) to the first author. The Secretaria de Medio Ambiente del Estado de Veracruz (SEDEMA) and the Subdirección de Medio Ambiente de Xalapa who allowed the use of urban natural parks. We thank the members of the Laboratory of Functional Ecology of the Pontificia Universidad Javeriana, Bogota-Colombia for their collaboration and contributions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adania CH, Carvalho WD, Rosalino LM, Pereira JC, Crawshaw PG (2017) First soft-release of a relocated puma in South America. Mammal Research 62:121–128.  https://doi.org/10.1007/s13364-016-0302-0 CrossRefGoogle Scholar
  2. Adler GH, Arboledo JJ, Travi BL (1997) Population dynamics of Didelphis marsupialis in Northern Colombia. Stud Neotrop Fauna Environ 32:7–11.  https://doi.org/10.1076/snfe.32.1.7.13462 CrossRefGoogle Scholar
  3. Álvarez AT, Sarabia MS (2006) Espectro alimentario de Aspidoscelis deppii (Sauria: Teiidae). Rev Zool 17:39–45Google Scholar
  4. Aranda SJM (2012) Manual para el rastreo de mamíferos silvestres de México. Comisión Nacional para el Conocimientos y Uso de la Biodiversidad, Ciudad de MéxicoGoogle Scholar
  5. Arcangeli J (2014) Manejo de crías de zarigüeya (Didelphis virginiana) en cautiverio. Rev Electron Vet 15:1–13 1695–7504Google Scholar
  6. Armenta-Méndez LC (2015) Porcentaje de ocupación y modelación del nicho ecológico de la zorra gris (Urocyon cinereoargenteus) en el cañón de las Barajitas, Sonora. Dissertation, Centro de Investigación en Alimentación y DesarrolloGoogle Scholar
  7. Bernardo PVS, Melo FR (2013) Assemblage of medium and large size mammals in an urban Semideciduous seasonal Forest fragment in Cerrado biome. Biota Neotrop 13:76–80.  https://doi.org/10.1590/S1676-06032013000200008 CrossRefGoogle Scholar
  8. Bogdan V, Jůnek T, Jůnková Vymyslická P (2016) Temporal overlaps of feral cats with prey and competitors in primary and human-altered habitats on Bohol Island. Philippines PeerJ 4:e2288.  https://doi.org/10.7717/peerj.2288 CrossRefGoogle Scholar
  9. Boitani L, Ciucci P, Ortolani A (2007) Behaviour and social ecology of free-ranging dogs. In: Jensen P (ed) The behavioral biology of dogs. CABI, Oxford, pp 147–165CrossRefGoogle Scholar
  10. Carvalho WD, Adania CH, Esbérard CEL (2013) Comparison of two mammalian surveys made with camera traps in southeastern Brazil, focusing the abundance of wild mammals and domestic dogs. Braz J Biol 73:29–36.  https://doi.org/10.1590/S1519-69842013000100005 CrossRefGoogle Scholar
  11. Carvalho DW, Rosalino LM, Godoy MSA, Giorgete MF, Harumi-Adania C, Lustosa-Esberard CE (2019) Temporal activity of rural free-ranging dogs: implications for the predator and prey species in the Brazilian Atlantic Forest. NeoBiota 45:55–74.  https://doi.org/10.3897/neobiota.45.30645 CrossRefGoogle Scholar
  12. Carver BD, Kennedy ML, Houston AE, Franklin SB (2011) Assessment of temporal partitioning in foraging patterns of syntopic Virginia opossums and raccoons. J Mammal 92:134–139.  https://doi.org/10.1644/10-MAMM-A-066.1 CrossRefGoogle Scholar
  13. Castellanos-Morales G, García-Peña N, List R (2008) Uso de recursos del cacomixtle Bassariscus astutus y la zorra gris Urocyon cinereoargenteus en una reserva urbana de la ciudad de México. In: Lorenzo-Monterrubio C, Espinoza-Medinilla E, Ortega J (eds) Avances en el estudio de los mamíferos II, Chapter: 19. Asociación Mexicana de Mastozoología, A. C., Ciudad de México, pp 377–390Google Scholar
  14. Ceballos G, Arroyo-Cabrales J (2012) Lista actualizada de los mamíferos de México 2012. Rev Mex Mastozool 2:27–80Google Scholar
  15. Ceballos G, Oliva G (2005) In: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Fondo de Cultura Económica, Ciudad de México (ed) Los mamíferos silvestres de MéxicoGoogle Scholar
  16. Colwell RK, Futuyma DJ (1971) On the measurement of niche breadth and overlap. Ecology 52:567–576.  https://doi.org/10.2307/1934144 CrossRefGoogle Scholar
  17. Cortés-Marcial M, Briones-Salas M (2014) Diversidad, abundancia relativa y patrones de actividad de mamíferos medianos y grandes en una selva seca del Istmo de Tehuantepec, Oaxaca. México Rev Biol Trop 62:1433–1448.  https://doi.org/10.15517/rbt.v62i4.13285 CrossRefGoogle Scholar
  18. Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201.  https://doi.org/10.1016/j.tree.2007.12.004 CrossRefGoogle Scholar
  19. Doherty TS, Dickman CR, Glen AS et al (2017) The global impacts of domestic dogs on threatened vertebrates. Biol Conserv 210:56–59.  https://doi.org/10.1016/j.biocon.2017.04.007 CrossRefGoogle Scholar
  20. Fagan WF (1997) Omnivory as a stabilizing feature of natural communities. Am Nat 150:554–567.  https://doi.org/10.1086/286081 CrossRefGoogle Scholar
  21. Farias V (2000) Gray fox distribution in southern California: detecting the effects of intraguild predation. Dissertation, University of MassachusettsGoogle Scholar
  22. Farias V, Fuller T, Sauvajot R (2012) Activity and distribution of gray foxes (Urocyon cinereoargenteus) in Southern California. Southwest Nat 57:176–181.  https://doi.org/10.1894/0038-4909-57.2.176 CrossRefGoogle Scholar
  23. Farris ZJ, Gerber BD, Karpanty S et al (2015) When carnivores roam: temporal patterns and overlap among Madagascar’s native and exotic carnivores. J Zool 296:45–57.  https://doi.org/10.1111/jzo.12216 CrossRefGoogle Scholar
  24. Farris ZJ, Kelly MJ, Karpanty S, Ratelolahy F (2016) Patterns of spatial co-occurrence among native and exotic carnivores in North-Eastern Madagascar. Anim Conserv 19:189–198.  https://doi.org/10.1111/acv.12233 CrossRefGoogle Scholar
  25. Farris ZJ, Gerber BD, Valenta K, Rafaliarison R, Razafimahaimodison JC, Larney E, Rajaonarivelo T, Randriana Z, Wright PC, Chapman CA (2017) Threats to a rainforest carnivore community: a multi-year assessment of occupancy and co-occurrence in Madagascar. Biol Conserv 210:116–124.  https://doi.org/10.1016/j.biocon.2017.04.010 CrossRefGoogle Scholar
  26. Frey S, Fisher JT, Burton AC, Volpe JP (2017) Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sens Ecol Conserv 3:123–132.  https://doi.org/10.1002/rse2.60 CrossRefGoogle Scholar
  27. Fuller TK, Cypher B (2004) Gray fox (Urocyon cinereoargenteus). In: Sillero-Zubiri C, Hoffmann M, Macdonald DW (eds) Canids: foxes, wolves, jackals, and dogs. Status survey and conservation action plan. IUCN/SSC Canid Specialist Group, Gland, Switzerland and CambridgeGoogle Scholar
  28. García E (1981) Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). Instituto de Geografía, Universidad Nacional Autónoma de México, Ciudad de MéxicoGoogle Scholar
  29. George SL, Crooks KR (2006) Recreation and large mammal activity in an urban nature reserve. Biol Conserv 133:107–117.  https://doi.org/10.1016/j.biocon.2006.05.024 CrossRefGoogle Scholar
  30. Gerber BD, Karpanty SM, Randrianantenaina J (2012) Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J Mammal 93:667–676.  https://doi.org/10.1644/11-MAMM-A-265.1 CrossRefGoogle Scholar
  31. Gilbert OL (1989) The ecology of urban habitat. Chapman & Hall, LondonCrossRefGoogle Scholar
  32. Gómez H, Wallace RB, Ayala G, Tejada R (2005) Dry season activity periods of some Amazonian mammals. Stud Neotrop Fauna Environ 40:91–95.  https://doi.org/10.1080/01650520500129638 CrossRefGoogle Scholar
  33. Gompper ME (2014) Free-ranging dogs and wildlife conservation. Oxford University Press, OxfordGoogle Scholar
  34. González G, Sánchez V, Íñiguez L, Santana E, Fuller T (1992) Patrones de actividad de coyote (Canis latrans), la zorra gris (Urocyon cinereoargenteus) y el tlacuache (Didelphis virginiana) en la Sierra de Manantlán, Jalisco. An Inst Biol Univ Nac Auton Mex Ser Zool 63:293–299Google Scholar
  35. González-Romero A, López-González CA (1993). Reconocimiento preliminar de la mastofauna asociada a las zonas suburbanas de Xalapa y Coatepec. In: López-Moreno IR (ed) Ecología urbana aplicada a la ciudad de Xalapa. Instituto de Ecología, Programme on man and the Biosphere, Ayuntamiento de Xalapa, Xalapa, pp 223–243Google Scholar
  36. Halle S (2000) Ecological relevance of daily activity patterns. In: Halle S, Stenseth NC (eds) Activity patterns in small mammals. Springer, Berlin, pp 67–90CrossRefGoogle Scholar
  37. Harrison RL (1997) A comparison of gray fox ecology between residential and undeveloped rural landscapes. J Wildl Manag 61:112–122.  https://doi.org/10.2307/3802420 CrossRefGoogle Scholar
  38. Hernández Rivera MG, Torres Hernández L (2015) Análisis de dos áreas naturales protegidas en relación con el crecimiento del Área Metropolitana de Xalapa, Veracruz. Investig Geográficas, Boletín del Inst Geogr 2015:51–61.  https://doi.org/10.14350/rig.39077 Google Scholar
  39. Heurich M, Hilger A, Küchenhoff H et al (2014) Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS One 9:e114143.  https://doi.org/10.1371/journal.pone.0114143 CrossRefGoogle Scholar
  40. Hughes J, Macdonald DW (2013) A review of the interactions between free-roaming domestic dogs and wildlife. Biol Conserv 157:341–351.  https://doi.org/10.1016/j.biocon.2012.07.005 CrossRefGoogle Scholar
  41. Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77.  https://doi.org/10.2307/1936632 CrossRefGoogle Scholar
  42. Ikeda T, Uchida K, Matsuura Y, Takahashi H, Yoshida T, Kaji K, Koizumi I (2016) Seasonal and diel activity patterns of eight sympatric mammals in northern Japan revealed by an intensive camera-trap survey. PLoS One 11:e0163602.  https://doi.org/10.1371/journal.pone.0163602 CrossRefGoogle Scholar
  43. INEGI (Instituto Nacional de Estadística Geografía e Informática) (2009) Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Xalapa, Veracruz de Ignacio de la Llave, clave geoestadística 30087. XalapaGoogle Scholar
  44. INEGI (Instituto Nacional de Estadística Geografía e Informática) (2015) Panorama sociodemográfico de Veracruz, encuesta intercensal. Ciudad de México. internet.contenidos.inegi.org.mx/...serv/.../inter_censal/panorama/702825082420.pdf/. Accessed 10 June 2018
  45. Lessa I, Guimarães TCS, Bergallo HG, Cunha A, Vieira EM (2016) Domestic dogs in protected areas: a threat to Brazilian mammals? Natureza & Conservação 14:46–56.  https://doi.org/10.1016/j.ncon.2016.05.001 CrossRefGoogle Scholar
  46. Levins R (1968) Evolution in changing environments: some theoretical explorations. Princeton University, New JerseyGoogle Scholar
  47. Linkie M, Ridout MS (2011) Assessing tiger-prey interactions in Sumatran rainforests. J Zool 284:224–229.  https://doi.org/10.1111/j.1469-7998.2011.00801.x CrossRefGoogle Scholar
  48. Lira-torres I, Briones-Salas M (2012) Abundancia relativa y patrones de actividad de los mamíferos de los Chimalapas, Oaxaca. México Acta Zool Mex 28:566–585Google Scholar
  49. Maffei L, Noss AJ, Cuéllar E, Rumiz DI (2005) Ocelot (Felis pardalis) population densities, activity, and ranging behaviour in the dry forests of eastern Bolivia: data from camera trapping. J Trop Ecol 21:349–353.  https://doi.org/10.1017/S0266467405002397 CrossRefGoogle Scholar
  50. Manjarrés-Rodríguez TS (2015) Dieta del Perro (Canis familiaris) y sus interacciones con la fauna silvestre de la cuenca alta del Río Otún-Risaralda (Colombia). Dissertation, Pontificia Universidad JaverianaGoogle Scholar
  51. McKinney ML (2002) Urbanization, biodiversity and conservation. BioScience 52:883–890.  https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2 CrossRefGoogle Scholar
  52. Mella-Méndez I (2015) Impacto de perros y gatos de vida libre sobre la comunidad de mamíferos medianos en áreas naturales protegidas urbanas de Xalapa, Veracruz, México. Dissertation, Universidad VeracruzanaGoogle Scholar
  53. Meredith M, Ridout M (2016) Overlap: estimates of coefficient of overlapping for animal activity patterns. R package version 0.2.6. https://CRAN.R-project.org/package=overlap. Accessed 14 March 2018
  54. Mitchell BD, Banks PB (2005) Do wild dogs exclude foxes? Evidence for competition from dietary and spatial overlaps. Austral Ecol 30:581–591.  https://doi.org/10.1111/j.1442-9993.2005.01473.x CrossRefGoogle Scholar
  55. Monroy-Vilchis O, Rodríguez-Soto C, Zarco-González M, Urios V (2009) Cougar and jaguar habitat use and activity patterns in Central Mexico. Anim Biol 59:145–157.  https://doi.org/10.1163/157075609X437673 CrossRefGoogle Scholar
  56. Monroy-Vilchis O, Zarco-González MM, Ramírez-Pulido J, Aguilera-Reyes U (2011) Diversidad de mamíferos de la Reserva Natural Sierra Nanchititla, México. Rev Mex Biodiv 82:237–248Google Scholar
  57. Monterroso P, Alves PC, Ferreras P (2013) Catch me if you can: diel activity patterns of mammalian prey and predators. Ethology 119:1044–1056.  https://doi.org/10.1111/eth.12156 CrossRefGoogle Scholar
  58. Mora-Ascencio P, Mendoza-Durán A, Chávez C (2010) Densidad poblacional y daños ocasionados por la ardilla Sciurus aureogaster: implicaciones para la conservación de los Viveros de Coyoacán, México. Rev Mex Mastozool 14:7–22Google Scholar
  59. Nielsen AB, van den Bosch M, Maruthaveeran S, van den Bosch CK (2014) Species richness in urban parks and its drivers: a review of empirical evidence. Urban Ecosyst 17:305–327.  https://doi.org/10.1007/s11252-013-0316-1 CrossRefGoogle Scholar
  60. Nowak R (1991) Walker’s mammals of the world. Johns Hopkins University Press, BaltimoreGoogle Scholar
  61. Paschoal AMO, Massara RL, Santos JL, Chiarello AG (2012) Is the domestic dog becoming an abundant species in the Atlantic forest? A study case in southeastern Brazil. Mammalia 76:67–76.  https://doi.org/10.1515/mammalia-2012-0501 CrossRefGoogle Scholar
  62. Phillips AJK, Fulcher BD, Robinson PA, Klerman EB (2013) Mammalian rest/activity patterns explained by physiologically based modeling. PLoS Comput Biol 9:e1003213.  https://doi.org/10.1371/journal.pcbi.1003213 CrossRefGoogle Scholar
  63. Reid FA (1997) A field guide to the mammals of Central America and Southeast Mexico. Oxford University, Nueva YorkGoogle Scholar
  64. Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat 14:322–337.  https://doi.org/10.1198/jabes.2009.08038 CrossRefGoogle Scholar
  65. Rodriguez-Matla M (2016) Efecto de la orina de perros en la conducta de alimentación de mamíferos medianos silvestres en parques ecológicos urbanos de Xalapa, Veracruz, México. Dissertation. Universidad VeracruzanaGoogle Scholar
  66. Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol 45:1228–1236.  https://doi.org/10.1111/j.1365-2664.2008.01473.x CrossRefGoogle Scholar
  67. Rzedowski J (2006) Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Ciudad de MéxicoGoogle Scholar
  68. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332.  https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  69. Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39.  https://doi.org/10.1126/science.185.4145.27 CrossRefGoogle Scholar
  70. Silva KVKA, Kenup CF, Kreischer C, Fernandez FAS, Pires AS (2018) Who let the dogs out? Occurrence, population size and daily activity of domestic dogs in an urban Atlantic Forest reserve. Perspect Ecol Conser 16:228–233.  https://doi.org/10.1016/j.pecon.2018.09.001 Google Scholar
  71. Srbek-Araujo AC, García-Chiarello A (2005) Is camera-trapping an efficient method for surveying mammals in Neotropical forests? A case study in South-Eastern Brazil. J Trop Ecol 21:121–125.  https://doi.org/10.1017/S0266467404001956 CrossRefGoogle Scholar
  72. Srbek-Araujo AC, Chiarello AG (2008) Domestic dogs in Atlantic Forest preserves of South-Eastern Brazil: a camera-trapping study on patterns of entrance and site occupancy rates. Braz J Biol 68:771–779.  https://doi.org/10.1590/S1519-69842008000400011 CrossRefGoogle Scholar
  73. Súzan G, Ceballos G (2005) The role of feral mammals on wildlife infectious disease prevalence in two nature reserves within Mexico City limits. J Zoo Wildl Med 36:479–484.  https://doi.org/10.1638/04-078.1 CrossRefGoogle Scholar
  74. Valladares F, Bastias CC, Godoy O, Granda E, Escudero A (2015) Species coexistence in a changing world. Front Plant Sci 6.  https://doi.org/10.3389/fpls.2015.00866
  75. Vanak AT, Gompper ME (2009a) Dietary niche separation between sympatric free-ranging domestic dogs and indian foxes in Central India. J Mammal 90:1058–1065.  https://doi.org/10.1644/09-MAMM-A-107.1 CrossRefGoogle Scholar
  76. Vanak AT, Gompper ME (2009b) Dogs Canis familiaris as carnivores: their role and function in intraguild competition. Mamm Rev 39:265–283CrossRefGoogle Scholar
  77. Vanak AT, Gompper ME (2010) Interference competition at the landscape level: the effect of free-ranging dogs on a native mesocarnivore. J Appl Ecol 47:1225–1232.  https://doi.org/10.1111/j.1365-2664.2010.01870.x CrossRefGoogle Scholar
  78. Vanak AT, Thaker M, Gompper ME (2009) Experimental examination of behavioural interactions between free-ranging wild and domestic canids. Behav Ecol Sociobiol 64:279–287.  https://doi.org/10.1007/s00265-009-0845-z CrossRefGoogle Scholar
  79. Vanak AT, Dickman CR, Silva-Rodríguez EA, Butler JRA, Ritchie EG (2014) Top-dogs and under-dogs: competition between dogs and sympatric carnivores. In: Gompper ME (ed) free-ranging dogs and wildlife conservation. Oxford University Press, Oxford, pp 69–93Google Scholar
  80. Villalobos-Escalante A, Buen-Rostro-Silva A, de la Vega Sánchez G (2014) Dieta de la zorra gris Urocyon cinereoargenteus y su contribución a la dispersión de semillas en la costa de Oaxaca, México. Therya 5:355–363.  https://doi.org/10.12933/therya-14-143 CrossRefGoogle Scholar
  81. Wauters L, Swinnen C, Dhondt AA (1992) Activity budget and foraging behavior of red squirrels (Sciurus vulgaris) in coniferous and deciduous habitats. J Zool 227:71–86.  https://doi.org/10.1111/j.1469-7998.1992.tb04345.x CrossRefGoogle Scholar
  82. Weston M, Fitzsimons JA, Wescott GC, Miller KK (2014) Bark in the park: a review of domestic dogs in parks. Environ Manag 54:373–382.  https://doi.org/10.1007/s00267-014-0311-1 CrossRefGoogle Scholar
  83. Wilson MC, Chen XY, Corlett RT et al (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227.  https://doi.org/10.1007/s10980-015-0312-3 CrossRefGoogle Scholar
  84. Zapata-Ríos G, Branch LC (2016) Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol Conserv 193:9–16.  https://doi.org/10.1016/j.biocon.2015.10.016 CrossRefGoogle Scholar
  85. Zhang J (2013) spaa: Species Association Analysis. R package version 0.2.1. https://CRAN.R project.org/package=spaa. Accessed 14 March 2018

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Isac Mella-Méndez
    • 1
  • Rafael Flores-Peredo
    • 1
    Email author
  • Jairo Pérez-Torres
    • 2
  • Sergio Hernández-González
    • 3
  • Dino Ulises González-Uribe
    • 4
  • Beatriz del Socorro Bolívar-Cimé
    • 1
  1. 1.Instituto de Investigaciones ForestalesUniversidad VeracruzanaVeracruzMexico
  2. 2.Unidad de Ecología y Sistemática, Departamento de Biología, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
  3. 3.Facultad de Estadística e InformáticaUniversidad VeracruzanaVeracruzMexico
  4. 4.Departamento de Estadística y CálculoUniversidad Autónoma Agraria Antonio NarroCoahuilaMexico

Personalised recommendations