Advertisement

Urban Ecosystems

, Volume 22, Issue 1, pp 173–187 | Cite as

Urban ecosystem Services in Latin America: mismatch between global concepts and regional realities?

  • Cynnamon DobbsEmail author
  • Francisco J. Escobedo
  • Nicola Clerici
  • Francisco de la Barrera
  • Ana Alice Eleuterio
  • Ian MacGregor-Fors
  • Sonia Reyes-Paecke
  • Alexis Vásquez
  • Jorge Danilo Zea Camaño
  • H. Jaime Hernández
Article

Abstract

Latin America and the Caribbean (LAC) is one of the most urbanized and biologically diverse regions in the world but is often characterized by weak environmental governance and socioeconomic inequalities. Given large expanses of intact biomes, a long history of pre-Colombian civilizations, and recent urbanization trends, the urban ecosystem services (UES) concept has the potential to address issues of well-being for its citizens. We review relevant regional and global literature and use expert-based knowledge to identify the state of the art of the UES concept as applicable to green spaces in LAC and elucidate three overarching guidelines for management and future research needs: 1. LAC cities can be socio-ecologically unique; 2. Drivers of UES in LAC can be different than in other regions; and 3. Context and demand need to be accounted for when valuing UES. Overall, we show that research on UES is mostly from the global north and rarely accounts for the diverse and complex socio-political and ecological drivers of LAC’s urbanization processes. We find that, as in other regions, the biophysical context and land use policies play a major role on UES provision. However, socioeconomic inequalities and weak governance are key drivers in UES supply and demand in LAC. Context-specific information on how to promote, educate, and apply UES is particularly important, not only in LAC, but in other regions where inequities, rapid urbanization, and climate change effects are stressing socio-political and ecological systems and their adaptive capacities. Standardized approaches from developed countries should be used to complement - not substitute – LAC context specific approaches for studying and applying UES. We suggest that improved research funding and local governance can also provide critical strategies, information and the means for more effective management, planning, and equitable provision of UES.

Keywords

Green infrastructure Socio-ecological systems Urban ecology Governance Social inequities 

Notes

Acknowledgements

We thank Nina Singh –USA, Juliana Montoya Arango – Colombia, and Ina Falfán -Mexico for their helpful reviews. HJH is supported by FONDECYT 1140319 “Vegetation knowledge-based indicators for urban sustainable planning”; CD is supported by FONDECYT 3150352 “Provision of urban ecosystem services, exploring the effects of planning, urbanization, climate and environmental conditions on the urban forest of Santiago and La Serena”; FDB is supported by FONDECYT 3150351 “Modelación de servicios ecosistémicos de parques urbanos en sectores metropolitanos”. SR is supported by FONDECYT 1161709 “Contribucion del enfoque de servicios ecosistémicos a la planificación urbana”; FDB and SR are supported by CONICYT/FONDAP 15110020.

Supplementary material

11252_2018_805_MOESM1_ESM.docx (62 kb)
ESM 1 (DOCX 61 kb)

References

  1. Aguayo MI, Wiegand T, Azócar GD, Wiegand K, Vega CE (2007) Revealing the driving forces of mid-cities urban growth patterns using spatial modeling: a case study of Los Ángeles, Chile. Ecol Soc 12(1):13CrossRefGoogle Scholar
  2. Aide TM, Grau HR (2004) Globalization, migration and Latin American ecosystems. Science 305(5692):1915–1916.  https://doi.org/10.1126/science.1103179 CrossRefPubMedGoogle Scholar
  3. Aleixo KP, Faria LB, Groppo M, Nascimento MMC, Silva CI (2014) Spatiotemporal distribution of floral resources in a Brazilian city: implications for maintenance of pollinators especially bees. Urban For Urban Green 13(4):689–696.  https://doi.org/10.1016/j.ufug.2014.08.002 CrossRefGoogle Scholar
  4. Almeida CMVB, Mariano MV, Agostinho F, Liu GY, Yang ZF, Coscieme L, Giannetti BF (2018) Comparing costs and supply of supporting and regulating services provided by urban parks at different spatial scales. Ecosyst Serv 30:236–247.  https://doi.org/10.1016/j.ecoser.2017.07.003 CrossRefGoogle Scholar
  5. Altieri MA, Companioni N, Cañizares K, Murphy C, Rosset O, Bourque M, Nicholls CI (1999) The greening of the ‘barrios’: urban agriculture for food security in Cuba. Agric Hum Values 16(2):131–140.  https://doi.org/10.1023/A:1007545304561 CrossRefGoogle Scholar
  6. Andersson E, Barthel S, Ahrné K (2007) Measuring social–ecological dynamics behind the generation of ecosystem services. Ecol Appl 17(5):1267–1278.  https://doi.org/10.1890/06-1116.1 CrossRefPubMedGoogle Scholar
  7. Angonese JG, Grau HR (2014) Assessment of swaps and persistence in land cover changes in a subtropical periurban region, NW Argentina. Landsc Urban Plan 127:83–93.  https://doi.org/10.1016/j.landurbplan.2014.01.021 CrossRefGoogle Scholar
  8. Báez-Montenegro A, Bedate AM, Herrero LC, Sanz JT (2012) Inhabitants' willingness to pay for cultural heritage: a case study in Valdivia, Chile, using contingent valuation. J Appl Econ 15(2):235–258.  https://doi.org/10.1016/S1514-0326(12)60011-7 CrossRefGoogle Scholar
  9. Balvanera P, Uriarte M, Almeida-Leñero L, Altesor A, Declerk F, Gardner T, Hall F, Lara A, Laterra P, Peña-Claros M, Silva DM (2012) Ecosystem service research in Latin America: the state of art. Ecosyst Serv 2:56–70.  https://doi.org/10.1016/j.ecoser.2012.09.006 CrossRefGoogle Scholar
  10. Banzhaf E, Reyes-Paecke SM, de la Barrera F (2018) What really matters in green infrastructure for the urban quality of life? Santiago de Chile as a showcase city. In: Kabisch S, Koch F, Gawel E, Haase A, Knapp S, Krellenberg K, Nivala J, Zehnsdorf A (eds) Urban transformations: sustainable urban development through resource efficiency, quality of life and resilience. Future City series. Springer, NetherlandsGoogle Scholar
  11. Barbedo J, Miguez M, van der Horst D, Marins M (2014) Enhancing ecosystem services for flood mitigation: a conservation strategy for peri-urban landscapes? Ecol Soc 19:1–11.  https://doi.org/10.5751/ES06482190254 CrossRefGoogle Scholar
  12. Baumgardner D, Varela S, Escobedo FJ, Chacalo A, Ochoa C (2012) The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis. Environ Pollut 163:174–183.  https://doi.org/10.1016/j.envpol.2011.12.016 CrossRefPubMedGoogle Scholar
  13. Benitez G, Perez-Vasquez A, Nava-Tablada M, Equihua M, Lavarez-Palacios JL (2012) Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa City, Veracruz, Mexico. Environ Urban 24(1):149–166.  https://doi.org/10.1177/0956247812437520 CrossRefGoogle Scholar
  14. Biggs TW, Anderson WG, Pombo OA (2015) Concrete and poverty, vegetation and wealth? A counterexample from remote sensing of socioeconomic indicators on the US–Mexico border. Prof Geogr 67:166–179.  https://doi.org/10.1080/00330124.2014.905161 CrossRefGoogle Scholar
  15. Borsdorf A, Hidalgo R (2010) From polarization to fragmentation. Recent changes in Latin American urbanization. In: Lindert P, Verkoren O (eds) Decentralized development in Latin America - experiences in local governance and local development. Springer, Dordrecht, pp 23–34CrossRefGoogle Scholar
  16. Caballero-Serrano V, Onaindia M, Alday JG, Caballero D, Carrasco JC, McLaren B, Amigo J (2016) Plant diversity and ecosystem services in Amazonian homegardens of Ecuador. Agric Ecosyst Environ 225:116–125.  https://doi.org/10.1016/j.agee.2016.04.005 CrossRefGoogle Scholar
  17. Calderón-Contreras R, Quiroz-Rosas LE (2017) Analysing scale, quality and diversity of green infrastructure and the provision of urban ecosystem services: a case from Mexico City. Ecosyst Serv 23:127–137.  https://doi.org/10.1016/j.ecoser.2016.12.004 CrossRefGoogle Scholar
  18. Camacho-Cervantes M, Schondube JE, Castillo A, MacGregor-Fors I (2014) How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city. Urban Ecosystems 17(3):761–773.  https://doi.org/10.1007/s11252-014-0343-6 CrossRefGoogle Scholar
  19. Caro-Borrero A, Corbera E, Neitzel KC, Almeida-Leñero L (2015) “We are the city lungs”: payments for ecosystem services in the outskirts of Mexico City. Land Use Policy 43:138–148.  https://doi.org/10.1016/j.landusepol.2014.11.008 CrossRefGoogle Scholar
  20. Casey JF, Kahn JR, Rivas A (2006) Willingness to pay for improved water service in Manaus, Amazonas, Brazil. Ecol Econ 58(2):365–372.  https://doi.org/10.1016/j.ecolecon.2005.07.016 CrossRefGoogle Scholar
  21. Celemin JP, Marcos M, Velázquez GA (2013) Calidad ambiental y nivel socioeconomico, su articulacion en la region Metropolitana de Buenos Aires. Scripta Nova: Revista Electronica de Geografia y Ciencias Sociales 17(441):425–462Google Scholar
  22. Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD (2011) Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere 26:1–21.  https://doi.org/10.1890/ES1100088.1 CrossRefGoogle Scholar
  23. Cilento SA (2002) Sobre la vulnerabilidad Urbana de Caracas. Revista Venezolana de Economia y Ciencias Sociales 8(3):103–118Google Scholar
  24. Clerici N, Rubiano K, Abd-Elrahman A, Posada Hoestettler JM, Escobedo FJ (2016) Estimating Aboveground Biomass and Carbon Stocks in Periurban Andean Secondary Forests Using Very High Resolution Imagery. Forests 7(7):138Google Scholar
  25. Colding J, Lundberg J, Folke C (2006) Incorporating green-area user groups in urban ecosystem management. AMBIO 35(5):237–244.  https://doi.org/10.1579/05-A-098R.1 CrossRefPubMedGoogle Scholar
  26. Coronel AS, Feldman SR, Jozami E, Facundo K, Piacentini RD, Dubbeling, Escobedo F (2015) Effects of urban green areas on air temperature in a medium-sized Argentinian city. AIMS Environmental Science 2(3):803–816.  https://doi.org/10.3934/environsci.2015.3.803 CrossRefGoogle Scholar
  27. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R.V., Paruelo, J. and Raskin, R.G., 1997. The value of the world's ecosystem services and natural capital. Nature, 387(6630), pp.253–260Google Scholar
  28. Cram S, Cotler H, Morales LM, Sommer I, Carmona E (2008) Identificación de los servicios ambientales potenciales de los suelos en el paisaje urbano del Distrito Federal. Investigaciones Geográficas 66:81–104.  https://doi.org/10.14350/rig.17983 CrossRefGoogle Scholar
  29. Cui YY, De Foy B (2012) Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J Appl Meteorol Climatol 51(5):855–868.  https://doi.org/10.1175/JAMC-D-11-0104.1 CrossRefGoogle Scholar
  30. Cunha DGF, Sabogal-Paz LP, Dodds WK (2016) Land use influence on raw surface water quality and treatment costs for drinking supply in São Paulo state (Brazil). Ecol Eng 94:516–524.  https://doi.org/10.1016/j.ecoleng.2016.06.063 CrossRefGoogle Scholar
  31. Da Silva RFB, Alves Rodrigues MD, Vieira SA, Batistella M, Farinaci J (2017) Perspectives for environmental conservation and ecosystem services on coupled rural-urban systems. Perspectives in Ecology and Conservation, In Press.  https://doi.org/10.1016/j.pecon.2017.05.005
  32. De Freitas CM, Schütz GE, Oliveira SGD (2007) Environmental sustainability and human well-being indicators from the ecosystem perspective in the middle Paraíba region, Rio de Janeiro state, Brazil. Cad Saude Publica 23:S513–S528CrossRefGoogle Scholar
  33. De Geoffroy A (2009) Fleeing war and relocating to the urban fringe – issues and actors: the cases of Khartoum and Bogota. IRRC 91(875):509–526.  https://doi.org/10.1017/S1816383109990361 CrossRefGoogle Scholar
  34. De Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L (2012) Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv 1(1):50–61.  https://doi.org/10.1016/j.ecoser.2012.07.005 CrossRefGoogle Scholar
  35. De la Barrera F, Reyes-Paecke S, Banzhaf E (2016) Indicators for green spaces in contrasting urban settings. Ecol Indic 62:212–219.  https://doi.org/10.1016/j.ecolind.2015.10.027 CrossRefGoogle Scholar
  36. De la Barrera F, Reyes-Paecke S, Harris J, Bascuñán D, Farías JM (2016b) People’s perception influences on the use of green spaces in socio-economically differentiated neighborhoods. Urban For Urban Green 20:254–264.  https://doi.org/10.1016/j.ufug.2016.09.007 CrossRefGoogle Scholar
  37. De Medeiros PM, Ladio AH, Alburquerque UP (2013) Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: a macroscale investigation based on available literature. J Ethnopharmacol 150(2):729–746.  https://doi.org/10.1016/j.jep.2013.09.026 CrossRefPubMedGoogle Scholar
  38. De Mola UL, Ladd B, Duarte S, Borchard N, La Rosa RA, Zutta B (2018) On the use of hedonic price índices to understand ecosystem service provision from urban green space in five Latin American megacities. Forets 8(12):478Google Scholar
  39. De Souza Filho JR, Santos RC, Silva IR, Elliff CI (2014) Evaluation of recreational quality, carrying capacity and ecosystem services supplied by sandy beaches of the municipality of Camaçari, northern coast of Bahia, Brazil. J Coast Res 70(sp1):527–532.  https://doi.org/10.2112/SI70089.1 CrossRefGoogle Scholar
  40. Del Angel-Perez AL, Villagomez-Cortes JA, Diaz-Padilla G (2011) Socioeconomic assessment of hydrologic environmental services in Veracruz (Coatepec and San Andres Tuxtla). Revista Mexicana de Ciencias Forestales 2(6):95–112Google Scholar
  41. Dickie IA, Bennett BM, Burrows LE, Nunez MA, Peltzer DA, Porte A, Richardson DM, Rejmanek M, Rundel PW, van Wilgen BW (2014) Conflicting values: ecosystem services and invasive tree management. Biol Invasions 16:705–719.  https://doi.org/10.1007/s1053001306096 CrossRefGoogle Scholar
  42. Ditt EH, Mourato S, Ghazoul J, Knight J (2010) Forest conversion and provision of ecosystem services in the Brazilian Atlantic Forest. Land Degrad Dev 21:591–603.  https://doi.org/10.1002/ldr.1010 CrossRefGoogle Scholar
  43. Dobbs C, Escobedo FJ, Zipperer WC (2011) A framework for developing urban forest ecosystem services and goods indicators. Landsc Urban Plan 99(3–4):196–206  https://doi.org/10.1016/j.landurbplan.2010.11.004 CrossRefGoogle Scholar
  44. Dobbs C, Kendal D, Nitschke CR (2014) Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographichs. Ecol Indic 43:44–55.  https://doi.org/10.1016/j.ecolind.2014.02.007 CrossRefGoogle Scholar
  45. Dobbs C, Nitschke CR, Kendal D (2017) Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci Total Environ 592:171–177.  https://doi.org/10.1016/j.scitotenv.2017.03.058 CrossRefPubMedGoogle Scholar
  46. Dobbs C, Hernández-Moreno Á, Reyes-Paecke S, Miranda MD (2018) Exploring temporal dynamics of urban ecosystem services in Latin America: the case of Bogota (Colombia) and Santiago (Chile). Ecol Indic 85:1068–1080CrossRefGoogle Scholar
  47. Dos Santos APM, Passuello A, Schuhmacher M, Nadal M, Domingo JL, Martinez CA, Segura-Munoz SI, Takayanagui AMM (2014) A support tool for air pollution health risk management in emerging countries: a case in Brazil. Hum Ecol Risk Assess 20:1406–1424.  https://doi.org/10.1080/10807039.2013.838117 CrossRefGoogle Scholar
  48. Escobedo F, Chacalo A (2008) Estimación preliminar de la descontaminación atmosférica por parte del arbolado urbano de la ciudad de México. Interciencia 33:29–33Google Scholar
  49. Escobedo FJ, Wagner JE, Nowak DJ, De la Maza CL, Rodriguez M, Crane DE (2008) Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality. J Environ Manag 86:148–157.  https://doi.org/10.1016/j.jenvman.2006.11.029 CrossRefGoogle Scholar
  50. Escobedo FJ, Kroeger T, Wagner J (2011) Urban forest and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159(8–9):2078–2087.  https://doi.org/10.1016/j.envpol.2011.01.010 CrossRefPubMedGoogle Scholar
  51. Escobedo FJ, Clerici N, Staudhammer CL, Tovar-Corzo G (2015) Socio-ecological dynamics and inequality in Bogotá, Colombia’s public urban forests and their ecosystem services. Urban For Urban Green 14(4):1040–1053.  https://doi.org/10.1016/j.ufug.2015.09.011 CrossRefGoogle Scholar
  52. Escobedo FJ, Clerici N, Staudhammer CL, Feged-Rivadeneira A, Bohorquez JC, Tovar G (2018) Trees and crime in Bogota, Colombia: is the link an ecosystem disservice or service? Land Use Policy 78:583–592CrossRefGoogle Scholar
  53. Eva HD, Belward AS, De Miranda EE, Di Bella CM, Gond V, Huber O, Jones S, Sgrenzaroli M, Fritz S (2004) A land cover map of South America. Glob Chang Biol 10(5):731–744.  https://doi.org/10.1111/j.1529-8817.2003.00774.x CrossRefGoogle Scholar
  54. Faggi A, Caula S (2017) ‘Green’ or ‘gray’? Infrastructure and bird ecology in urban Latin America. In: MacGregor-Fors I, Escobar-Ibáñez JF (eds) Avian ecology in Latin American cityscapes. Springer, Cham, pp 79–98CrossRefGoogle Scholar
  55. FAO (2016) Guidelines on urban and peri-urban forestry, by F. Salbitano, S. Borelli, M. Conigliaro and Y. Chen. FAO Forestry Paper No. 178. Rome, Food and Agriculture Organization of the United NationsGoogle Scholar
  56. Favaro AKMD, Maria NC, Cutolo SA, de Toledo RF, Landin R, Tolffo FA, Baptista ACS, Giatti LL (2016) Inequities and challenges for a metropolitan region to improve climate resilience. Climate Change and Health p 419–432.  https://doi.org/10.1007/9783319246604_24
  57. Fernández L, Herrero CA, Martin I (2010) La impronta del urbanismo privado. Ecologia de las urbanizaciones cerradas en la region metripolitana de Buenos Aires. Scripta Nova 14(331):741–798Google Scholar
  58. Figueroa F, Caro-Borrero A, Revollo-Fernandez D, Merino L, Almeida-Lenero L, Pare L, Espinosa D, Mazari-Hiriart M (2016) “I like to conserve the forest, but I also like the cash”. Socioeconomic factors influencing the motivation to be engaged in the Mexican payment for environmental services Programme. J For Econ 22:36–51.  https://doi.org/10.1016/j.jfe.2015.11.002 CrossRefGoogle Scholar
  59. Flores-Meza S, Katunaric-Nuñez M, Rovira-Soto J, Rebolledo-Gonzalez M (2013) Identificación de áreas favorables Para la Riqueza de fauna vertebrada en la zona Urbana y peri-Urbana de la Región Metropolitana, Chile. Rev Chil Hist Nat 86(3):265–277.  https://doi.org/10.4067/S0716-078X2013000300004 CrossRefGoogle Scholar
  60. Gómez-Baggethun E, Barton DN (2013) Classifying and valuing ecosystem services for urban planning. Ecol Econ 86:235–245.  https://doi.org/10.1016/j.ecolecon.2012.08.019 CrossRefGoogle Scholar
  61. González SA, Holtmann-Ahumada G (2017) Quality of tourist beaches of northern Chile: a first approach for ecosystem-based management. Ocean Coast Manag 137:154–164.  https://doi.org/10.1016/j.ocecoaman.2016.12.022 CrossRefGoogle Scholar
  62. González Y, Ojeda-Revah L (2017) Conservación de vegetación para reducir riesgos hidrometereológicos en una metrópoli fronteriza Estudios Fronterizos 2017 18(35):47–69Google Scholar
  63. González-Oreja JA, Bonache-Regidor C, De La Fuente-Díaz-Ordaz AA (2010) Far from the noisy world? Modelling the relationships between park size, tree cover and noise levels in urban green spaces of the city of Puebla, Mexico. Interciencia 35(7):486–492Google Scholar
  64. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760.  https://doi.org/10.1126/science.1150195 CrossRefPubMedGoogle Scholar
  65. Gutiérrez N, Gärtner S, Pacheco CE, Reif A (2013) The recovery of the lower montane cloud forest in the Mucujún watershed, Mérida, Venezuela. Reg Environ Chang 13:1069–1085.  https://doi.org/10.1007/s101130130413y CrossRefGoogle Scholar
  66. Haase D, Larondelle N, Andersson E, Artmann M, Borgström S, Breuste J, Gomez-Baggethun E, Gren A, Hamstead Z, Hansen R, Kabisch N, Kremer P, Langemeyer J, Lorance RE, McPhearson T (2014) A quantitative review of urban ecosystem service assessments: concepts, models, and implementation. Ambio 43(4):413–433.  https://doi.org/10.1007/s13280-014-0504-0 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hardoy J, Pandiella G (2009) Urban poverty and vulnerability to climate change in Latin America. Environ Urban 21(1):203–224.  https://doi.org/10.1177/0956247809103019 CrossRefGoogle Scholar
  68. Hasse D (2015) Reflections about blue ecosystem services in cities. Sustainability Water Qual Ecol 5:77–83.  https://doi.org/10.1016/j.swaqe.2015.02.003 CrossRefGoogle Scholar
  69. Henrique W (2006) A cidade e a natureza: a apropriação, a valorização e a sofisticação da natureza nos empreendimentos imobiliários de alto padrão em São Paulo. Geosup 20:65–77Google Scholar
  70. Inostroza L, Baur R, Csaplovics E (2013) Urban sprawl and fragmentation in Latin America: a dynamic quantification and characterization of spatial patterns. J Environ Manag 115:87–97.  https://doi.org/10.1016/j.jenvman.2012.11.007 CrossRefGoogle Scholar
  71. Isendahl C, Smith ME (2013) Sustainable agrarian urbanism: the low-density cities of the Mayas and Aztecs. Cities 31:132–143.  https://doi.org/10.1016/j.cities.2012.07.012 CrossRefGoogle Scholar
  72. Isernhagen I, le Bourlegat JMG, Carboni M (2009) Trazendo a riqueza arbórea regional para dentro das cidades: possibilidades, limitacões e beneficios. Revista da Sociedade Brasileira de Arborização Urbana 4(2):117–138Google Scholar
  73. Jardim MH, Bursztyn MA (2015) Payment for environmental services in water resources management: the case of Extrema (MG), Brazil. Engenharia Sanitaria e Ambiental 20:353–360.  https://doi.org/10.1590/S141341522015020000106299 CrossRefGoogle Scholar
  74. Jujnovsky J, Ramos A, Caro-Borrero Á, Mazari-Hiriart M, Maass M, Almeida-Leñero L (2017) Water assessment in a peri-urban watershed in Mexico City: a focus on an ecosystem services approach. Ecosyst Serv 24:91–100.  https://doi.org/10.1016/j.ecoser.2017.02.005 CrossRefGoogle Scholar
  75. Kabisch N, Frantzeskaki N, Pauleit S, Naumann S et al (2016) Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol Soc 21(39).  https://doi.org/10.5751/ES-08373-210239
  76. Kronenberg J (2014) What can the current debate on ecosystem services learn from the past? Lessons from economic ornithology. Geoforum 55:164–177.  https://doi.org/10.1016/j.geoforum.2014.06.011 CrossRefGoogle Scholar
  77. Larqué-Saavedra BS, Valdivia-Alcalá R, Islas-Gutiérrez F, Romo-Lozano JL (2004) Economic valuation of the environmental service of the forest of the Ixtapaluca municipality in state of México. Rev Int Contam Ambient 20(4):193–202Google Scholar
  78. Lima JMT, Brandeis T, Staudhammer C, Escobedo F, Zipperer W (2013) Temporal dynamics of a subtropical urban forest in San Juan, Puerto Rico, 2001-2010. Landsc Urban Plan 120:96–106.  https://doi.org/10.1016/j.landurbplan.2013.08.007 CrossRefGoogle Scholar
  79. Luederitz C, Brink E, Gralla F, Hermelingmeier V, Meyer M, Niven L, Abson DJ (2015) A review of urban ecosystem services: six key challenges for future research. Ecosyst Serv 14:98–112.  https://doi.org/10.1016/j.ecoser.2015.05.001 CrossRefGoogle Scholar
  80. Lustig N, Lopez-Calva LF, Ortiz-Juarez E (2015) Deconstructing the decline in inequality in Latin America. In: Basu K, Stiglitz J (eds) Proceedings of IEA Roundtable on Share Prosperity and Growth. Palgrave MacMillan, New YorkGoogle Scholar
  81. MacGregor-Fors I, Escobar F, Rueda-Hernández R, Avendaño-Reyes S, Baena ML, Bandala VM, Chacón-Zapata S, Guillén-Servent A, González-García F, Lorea-Hernández F, Montes de Oca E, Montoya L, Pineda E, Ramírez-Restrepo L, Rivera-García E, Utrera-Barrillas E (2016) City “green” contributions: the role of urban greenspaces as reservoirs for biodiversity. Forests 7(7):146.  https://doi.org/10.3390/f7070146 CrossRefGoogle Scholar
  82. Machado FH, Silva LFB, Dupas FA, Mattedi AP, Vergara FE (2014) Economic assessment of urban watersheds: developing mechanisms for environmental protection of the Feijão river, São Carlos - SP, Brazil. Braz J Biol 74(3):677–684.  https://doi.org/10.1590/bjb.2014.0073 CrossRefPubMedGoogle Scholar
  83. Magrin G, Gay-García C, Cruz-Choque D, Giménez JC, Moreno AR, Nagy GJ (2007) Latin America. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 581–616Google Scholar
  84. Mazari-Hiriart M, Perez-Ortiz G, Orta-Ledesma MT, Armas-Vargas F, Tapia MA, Solano-Ortiz R, Silva MA, Yanez-Noguez I, Lopez-Vidal Y, Diaz-Avalos C (2014) Final opportunity to rehabilitate an urban river as a water source for Mexico City. PLoS One 9:1–17.  https://doi.org/10.1371/journal.pone.0102081 CrossRefGoogle Scholar
  85. Mendoza-González G, Martínez ML, Lithgow D, Pérez-Maqueo O, Simonin P (2012) Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecol Econ 82:23–32.  https://doi.org/10.1016/j.ecolecon.2012.07.018 CrossRefGoogle Scholar
  86. Mendoza-Hernandez PE, Orozco-Segovia A, Meave JA, Valverde T, Martinez-Ramos M (2013) Vegetation recovery and plant facilitation in a human-disturbed lava field in a megacity: searching tools for ecosystem restoration. Plant Ecol 214(1):153–167.  https://doi.org/10.1007/s11258-012-0153-y CrossRefGoogle Scholar
  87. Merlín-Uribe Y, Contreras-Hernández A, Astier-Calderón M, Jensen OP, Zaragoza R, Zambrano L (2013) Urban expansion into a protected natural area in Mexico City: alternative management scenarios. J Environ Plan Manag 56:398–411.  https://doi.org/10.1080/09640568.2012.683686 CrossRefGoogle Scholar
  88. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: a framework for assessment. Island Press Inc, Washington, DCGoogle Scholar
  89. Mitsch WJ, Hernandez ME (2013) Landscape and climate change threats to wetlands of north and Central America. Aquat Sci 75:133–149.  https://doi.org/10.1007/s0002701202627 CrossRefGoogle Scholar
  90. Moser A, Uhl E, Rotzer T, Biber P, Caldentey JM, Pretzsch H (2018) Effects of climate and drought events on urban tree growth in Santiago de Chile. Cienc Invest Agrar 45:35–50CrossRefGoogle Scholar
  91. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858.Google Scholar
  92. Nadal A, Cerón-Palma I, García-Gómez C, Pérez-Sánchez M, Rodríguez-Labajos B, Cuerva E, Josa A, Rieradevall J (2018) Social perception of urban agriculture in Latin-America. A case study in Mexican social housing. Land Use Policy 76:719–734CrossRefGoogle Scholar
  93. Nickson A (2001) Where Is local government going in Latin America? A comparative perspective (Working paper No. 6). ICLD Swedish International Centre for Local Democracy). http://www.icld.se/pdf/icld_wp6_printerfriendly.pdf. Accessed 15 May 2016
  94. Ordóñez C, Duinker PN (2014) Urban forest values of the citizenry in three Colombian cities. Soc Nat Resour 27(8):834–849.  https://doi.org/10.1080/08941920.2014.905891 CrossRefGoogle Scholar
  95. Pauchard A, Barbosa O (2013) Regional assessment of Latin America: rapid urban development and social economic inequity threaten biodiversity hotspots. In: Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht, pp 589–608CrossRefGoogle Scholar
  96. Pedlowski MA, Da Silva VAC, Adell JJC, Heynen NC (2002) Urban forest and environmental inequality in Campos Dos Goytacazes, Rio de Janeiro, Brazil. Urban Ecosystems 6(1):9–20.  https://doi.org/10.1023/A:1025910528583 CrossRefGoogle Scholar
  97. Perez-Campuzano E, Avila-Foucat VS, Perevochtchikova M (2016) Environmental policies in the peri-urban área of Mexico City: the perceived effects of three environmental programs. Cities 50:129–136.  https://doi.org/10.1016/j.cities.2015.08.013 CrossRefGoogle Scholar
  98. Perrings C, Duraiappah A, Larigauderie A, Mooney H (2011) The biodiversity and ecosystem service science-policy interface. Science 331:17–19CrossRefGoogle Scholar
  99. Pimienta-Barrios E, Robles-Murguía C, Carvajal S, Muñoz-Urias A, Martínez-Chávez C, León-Santos S (2014) Servicios ambientales de la vegetación en ecosistemas urbanos en el contexto del cambio climático. Revista Mexicana de Ciencias Forestales 5(22):28–39Google Scholar
  100. Pina WHA, Martínez CIP (2014) Urban material flow analysis: an approach for Bogotá, Colombia. Ecol Indic 42:32–42.  https://doi.org/10.1016/j.ecolind.2013.10.035 CrossRefGoogle Scholar
  101. Pisanty I, Mazari M, Ezcurra E (2009) El reto de la conservación de la biodiversidad en zonas urbanas y periurbanas. CONABIO. Capital natural de México, Vol. II: Estado de conservación y tendencias de cambio. http://www.biodiversidad.gob.mx/pais/pdf/CapNatMex/Vol%20II/II17_El%20reto%20de%20la%20conservacion%20de%20la%20biodiversidad%20en%20zon.pdf. Accessed 11 Nov 2015
  102. Ponce-Donoso M, Vallejos-Barra Ó, Daniluk-Mosquera G (2012) Comparación de fórmulas chilenas e internacionales Para valorar el arbolado urbano. Bosque 33(1):69–81.  https://doi.org/10.4067/S0717-92002012000100008 CrossRefGoogle Scholar
  103. Pougy N, Martins E, Verdi M, de Oliveira JA, Maurenza D, Amaro R, Martinelli G (2014) Urban forests and the conservation of threatened plant species: the case of the Tijuca National Park, Brazil. Nat Conservação 12:170–173.  https://doi.org/10.1016/j.ncon.2014.09.007 CrossRefGoogle Scholar
  104. Reyes-Paecke S, Figueroa IM (2010) Distribución, superficie y accesibilidad de las áreas verdes en Santiago de Chile. EURE 36(109):89–110.  https://doi.org/10.4067/S0250-71612010000300004 CrossRefGoogle Scholar
  105. Reyes-Paecke S, Meza L (2011) Jardines residenciales en Santiago de Chile: extensión, distribución y cobertura vegetal. Rev Chil Hist Nat 84(4):581–592.  https://doi.org/10.4067/S0716-078X2011000400010 CrossRefGoogle Scholar
  106. Ribeiro FP, Ribeiro KT (2016) Participative mapping of cultural ecosystem services in Pedra Branca State Park, Brazil. Nat Conservação 14:120–127.  https://doi.org/10.1016/j.ncon.2016.09.004 CrossRefGoogle Scholar
  107. Roberts BR (2005) Globalization and Latin American cities. Int J Urban Reg Res 29(1):110–123.  https://doi.org/10.1111/j.1468-2427.2005.00573.x CrossRefGoogle Scholar
  108. Romero H, Vasquez A, Fuentes C, Salgado M, Schmidt A, Banzhaf E (2012) Assessing urban environmental segregation (UES). The case of Santiago de Chile. Ecol Indic 23:76–87.  https://doi.org/10.1016/j.ecolind.2012.03.012 CrossRefGoogle Scholar
  109. Romero-Lankao P (2007) Are we missing the point? Particularities of urbanization, sustainability and carbon emissions in Latin American cities. Environ Urban 19(1):159–175.  https://doi.org/10.1177/0956247807076915 CrossRefGoogle Scholar
  110. Roy S, Byrne J, Pickering C (2012) A systematic quantitative review of urban tree benefits, costs and assessment methods across cities in different climatic zones. Urban For Urban Green 11(4):351–363.  https://doi.org/10.1016/j.ufug.2012.06.006 CrossRefGoogle Scholar
  111. Russo A, Escobedo FJ, Cirella GT, Zerbe S (2017a) Edible green infrastructure: an approach and review of provisioning ecosystem services and disservices in urban environments. Agric Ecosyst Environ 242:53–66CrossRefGoogle Scholar
  112. Russo A, Ignatieva M, Cirella GT, Marchensini LB, Krestov P, Korzhov E, Kalita V, Pavlosky V, Escobedo FJ (2017b) Biophilia: Nature-based solutions for sustainable cities. In: Three pillars of landscape architecture: Design, planning and management. Far Eastern Federal University, Saint Petersburg. pp 105–112Google Scholar
  113. Sacchi LV, Powell PA, Gasparri NI, Grau R (2017) Air quality loss in urban centers of the Argentinean dry Chaco: wind and dust control as two scientifically neglected ecosystem services. Ecosyst Serv 24:234–240.  https://doi.org/10.1016/j.ecoser.2017.03.006 CrossRefGoogle Scholar
  114. Salazar A, Moreira-Muñoz A, del Río C (2015) La Campana-Peñuelas biosphere Reserve in Central Chile: threats and challenges in a peri-urban transition zone. Eco Mont 7:66–71.  https://doi.org/10.1553/eco.mont71s66 CrossRefGoogle Scholar
  115. Santos AR, Rocha CFD, Bergallott HG (2010) Native and exotic species in the urban landscape of the city of Rio de Janeiro, Brazil: density, richness and arboreal deficit. Urban Ecosyst 13(2):209–222.  https://doi.org/10.1007/s11252-009-0113-z CrossRefGoogle Scholar
  116. Sarukhán J, Jiménez R (2016) Generating intelligence for decision making and sustainable use of natural capital in Mexico. Curr Opin Environ Sustain 19:153–159.  https://doi.org/10.1016/j.cosust.2016.02.002 CrossRefGoogle Scholar
  117. Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331.  https://doi.org/10.1007/s105310150972y CrossRefGoogle Scholar
  118. Scopellit M, Carrus G, Adinolfi C, Suarez G, Colangelo G, Lafortezza R, Panno A, Sanesi G (2016) Staying in touch with nature and well-being in different income groups: the experience of urban parks in Bogotá. Landsc Urban Plan 148:139–148.  https://doi.org/10.1016/j.landurbplan.2015.11.002 CrossRefGoogle Scholar
  119. TEEB (2011) TEEB manual for cities: Ecosystem services in urban management, The Economics of ecosystems and biodiversity (TEEB). www.teebweb.org
  120. Tognella-de-Rosa MMP, Cunha SR, Soares MLG, Schaeffer-Novelli Y, Lugli DO (2006) Mangrove evaluation-an essay. J Coast Res 2:1219–1224Google Scholar
  121. Tratalos J, Fuller RA, Warren PH, Davies RG, Gaston KJ (2007) Urban form, biodiversity potential and ecosystem services. Landsc Urban Plan 83(4):308–317  https://doi.org/10.1016/j.landurbplan.2007.05.003 CrossRefGoogle Scholar
  122. United Nations, Department of Economic and Social Affairs, Population Division (2014) World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352)Google Scholar
  123. United Nations, United Nations Development Program (2015) Sustainable Development GoalsGoogle Scholar
  124. United Nations, United Nations Environment Programme (2010) Environment Outlook: Latin America and the Caribbean GEO-LAC 3. Panama - United Nations Environmental ProgrammeGoogle Scholar
  125. Vargas-González HH, Arreola-Lizárraga JA, Mendoza-Salgado RA, Méndez-Rodríguez LC, Lechuga-Deveze CH, Padilla-Arredondo G, Cordoba-Matson M (2014) Effects of sewage discharge on trophic state and water quality in a coastal ecosystem of the Gulf of California. Sci World J 2014:1–8.  https://doi.org/10.1155/2014/618054 CrossRefGoogle Scholar
  126. Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497.  https://doi.org/10.1016/j.ecolind.2014.12.027 CrossRefGoogle Scholar
  127. Williams-Linera G, Lopez-Barrera F, Bonilla-Moheno M (2015) Establishing the baseline for cloud forest restoration in a peri-urban landscape. Madera y Bosques 21:89–101CrossRefGoogle Scholar
  128. Willis KJ, Petrokofsky G (2017) The natural capital of city trees. Science 356:374–376CrossRefGoogle Scholar
  129. Wright HE, Wenderl W, Zarger RK, Mihelcic JR (2012) Accessibility and usability: green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. Landsc Urban Plan 107(3):272–282.  https://doi.org/10.1016/j.landurbplan.2012.06.003 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Cynnamon Dobbs
    • 1
    Email author
  • Francisco J. Escobedo
    • 2
  • Nicola Clerici
    • 2
  • Francisco de la Barrera
    • 3
  • Ana Alice Eleuterio
    • 4
  • Ian MacGregor-Fors
    • 5
  • Sonia Reyes-Paecke
    • 6
  • Alexis Vásquez
    • 7
  • Jorge Danilo Zea Camaño
    • 8
  • H. Jaime Hernández
    • 9
  1. 1.Center for Modeling and Monitoring EcosystemsUniversidad MayorSantiagoChile
  2. 2.Functional and Ecosystem Ecology Unit (EFE), Biology Program, Faculty of Natural Sciences and MathematicsUniversidad del RosarioBogotáColombia
  3. 3.Geography Department and Center for Sustainable Urban DevelopmentUniversidad de ConcepcionConcepcionChile
  4. 4.Instituto Latino-Americano de Economía, Sociedade e PolíticaUniversidade Federal da Integração Latino-AmericanaFoz do IguaçuBrazil
  5. 5.Red de Ambiente y Sustentabilidad, Instituto de Ecología, A.CVeracruzMexico
  6. 6.Department of Ecosystems and Environment, Faculty of Agronomy and Forest Engineering and Center for Sustainable Urban DevelopmentPontificia Universidad Católica de ChileMaculChile
  7. 7.Geography Department, Faculty of Architecture and Urban PlanningUniversidad de ChileSantiagoChile
  8. 8.Universidade Federal do ParanáCuritibaBrazil
  9. 9.Geomatics and Landscape Ecology Lab, Faculty of Forestry and Nature ConservationUniversidad de ChileLa PintanaChile

Personalised recommendations