Advertisement

Ruminal and histological characteristics and nitrogen balance in lamb fed diets containing cactus as the only roughage

  • Kleitiane Balduino da Silva
  • Juliana Silva de OliveiraEmail author
  • Edson Mauro Santos
  • Felipe Queiroga Cartaxo
  • Ricardo Romão Guerra
  • Aelson Fernandes do Nascimento de Souza
  • Ana Cecília Souza Muniz
  • Gabriel Ferreira de Lima Cruz
Regular Articles

Abstract

This study examined rumen fermentation, histological, blood, and urinary characteristics as well as ammoniacal nitrogen concentration, pH, nitrogen balance, and microbial protein in lamb fed diets containing spineless cactus as the sole roughage source plus levels of wheat bran (WB) in comparison with a control diet based on spineless cactus and buffelgrass. Twenty-eight uncastrated, crossbreed lambs with an average initial weight of 22.6 ± 2.37 kg were used in the experiment. The treatments consisted of a standard diet (control) containing buffelgrass and spineless cactus and three diets containing cactus as the only roughage source plus varied concentrations of WB (30, 37, and 44%, on a dry matter basis). Results were evaluated by analysis of variance, and contrasts were applied at the 5% probability level for mean comparison. Rumen villus height and width were greater and musculature was lower in the lamb fed diets containing 37% and 44% WB compared with those fed control diet. In the intestine, the crypts were smaller in the animals which consumed the diets with 30, 44, and 37% WB. All WB levels resulted in lower nitrogen intake and retention. Microbial protein concentration, microbial protein efficiency, microbial nitrogen, urea, and glucose were not significantly affected. Feeding lamb with diets containing levels of wheat bran, with cactus as the only roughage source, does not negatively affect their ruminal-fermentation, blood, and urinary characteristics; ammoniacal nitrogen concentration; pH; or microbial protein. However, nitrogen balance and ruminal and intestinal morphometric characteristics are impaired.

Keywords

Ammoniacal nitrogen Microbial protein Rumen morphology Volatile fatty acids 

Notes

Funding information

The study was funded by Financing of Research Innovation (FINEP), as part of the Agrocap group; Coordination for the Improvement of Higher Education Personnel (CAPES), for the fellowship grant; and the Integrated Animal Science Doctoral Program in partnership with the Federal University of Paraíba-Brazil (UFPB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Ethics Committee at the Federal University of Paraíba-UFPB, in Brazil, approval no. 8179070318).

References

  1. Abidi, S., Ben Salem, H., Nefzoui, A., Vasta, V., Priolo, A., 2013. Silage composed of Opuntia ficus-indica F. inermis cladodes, olive cake and wheat bran as alternative feed for barbarine lamb. Proc. 7rd International Congress on Cactus Pear and Cochineal, Palermo, 2013 (ISHS Acta Horticulturae),  https://doi.org/10.17660/ActaHortic.2013.995.36
  2. Absalan, M., Afzalzade, A., Mirzaee, M., Sharifi, S. D., Khorvash, M., & Kazemi-Benchenari, M. 2011. Feeding of whole cottonseed on performance, carcass characteristics and intestinal morphology of Zandi lambs, South African Journal of Animal Science, 41(3), 309–317Google Scholar
  3. Association of Official Anaytical Chemists, AOAC. 1997. Official Methods of Analysis, (16th ed. Washington)Google Scholar
  4. Casalli, A.O., Detmann, E., Valadares Filho, S.C., Pereira, J.C., Henriques, L.T., Freitas, S.G., Paulino, M.F., 2008. Influência do tempo de incubação e do tamanho de partículas sobre os teores de compostos indigestíveis em alimentos e fezes bovinas obtidos por procedimentos in situ, Revista Brasileira de Zootecnia, 37, 335–342CrossRefGoogle Scholar
  5. Chaney, A, L, Marbach, E. P., 1962. Modified reagents for determination of urea and ammonia, Clinical Chemistry, 8, 130–132Google Scholar
  6. Chen, X. B., Gomes, M. J., 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - an overview of technical details, Rowett Research Institute, Bucksburnd, 1–21Google Scholar
  7. Chizzotti, M.L., Valadares Filho, S.C., Valadares, R.F.D., Chizzotti, F. H. M., Campos, J. M. D. S., Marcondes, M. I., Fonseca, M. A., 2006. Consumo, digestibilidade e excreção de ureia e derivados de purinas em novilhas de diferentes pesos, Revista Brasileira de Zootecnia, 35(4), 1813–1821CrossRefGoogle Scholar
  8. Clark, J. H., Klusmeyer, T. H., Cameron, M. R., 1992. Microbial protein synthesis and flows of nitro-gen fractionsto the duodenum of dairy cows, Journal of Dairy Science, 75, 2304–2323CrossRefGoogle Scholar
  9. Detmann, E., M. F. Paulino, H. C. Mantovani, S. C. Valadares Filho, C. B. Sampaio, M. A. Souza, I. Lazzarini, and K. S. C. Detmann. 2009. Parameterization of ruminal fibre degradation in low-quality tropical forage using Michaelis-Menten kinetics, Livestock Science, 126:136–146CrossRefGoogle Scholar
  10. Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Azevedo, J. A. G., 2012. Métodos para análise de alimentos-INCT-Ciência Animal, (Suprema, Visconde do Rio Branco)Google Scholar
  11. Ferreira, M.A., Pessoa, R.A.S., Silva, F.M., Bispo, S.V. 2010. Palma forrageira e uréia na alimentação de vacas leiteiras, (EDUFRPE, Recife)Google Scholar
  12. Galvão Júnior, J. G. B., Silva, J. B. A., Morais, J. H. G., Lima, R. N., 2014. Cactus in ruminant feeding: culture and use, Acta Veterinaria Brasilica, 8, 78–85Google Scholar
  13. Ghoorchi, T., & Arbabi, S. 2010. Study of protein characteristic of five feeds by CNCPS model, Asian Journal of Animal and Veterinary Advances, 5(8), 584–591CrossRefGoogle Scholar
  14. Gomide-Júnior, M. L., Sterzo, E. V., Macari, M., Boleli, I. C., 2004. Use of scanning electron microscopy for the evaluation of intestinal epithelium integrity, Revista Brasileira de Zootecnia, 33, 1500–1505CrossRefGoogle Scholar
  15. Gonzalez, F. H., Barcellos, J., Ospina, H., Ribeiro, L. A. 2000. Uso do perfil metabólico para determinar o status nutricional em gado de corte, In: Gráfica da Universidade Federal do Rio Grande do Sul (Org.), Perfil Metabólico em ruminantes: seu uso em nutrição e doenças nutricionais, 2000, p.106–120Google Scholar
  16. Heleno, A.R., Santos, L.M., Miglino, M.A., Peres, J.A., Guerra, R.R., 2011. Biometria, histologia e morfometria do sistema digestório do cachorro-do-mato (Cerdocyon thous) de vida livre, Biotemas, 24, 111–119Google Scholar
  17. Kaneko, J.J., Harvey, J.W., Bruss, M.L., 2008. Clinical biochemistry of domestic animals (San Diego CA: Academic Press)Google Scholar
  18. Kononoff, P. J., Heinrichs, A. J., Buckmaster, D. R., 2003. Modification of the Penn State Forage and Total Mixed Ration Particle Separator and the Effects of Moisture Content on its Measurements, Journal of Dairy Science, 86, 1858–1863CrossRefGoogle Scholar
  19. Kozloski, G.V., 2002. Bioquímica dos ruminantes, (1 ed. Santa Maria: UFSM)Google Scholar
  20. Licitra, G., Hernandez, T.M., Van Soest, P.J., 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds, Animal Feed Science and Technology, 57, 347–358CrossRefGoogle Scholar
  21. Martens, H., Rabbani, I., Sheng, Z., Stumpff, F., Deiner, C., 2002. Changes in rumen absorption processes during transition, Animal Feed Science and Technology,172, 95–102CrossRefGoogle Scholar
  22. Mertens, D.R., 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study, Journal of Association of Official Anaytical Chemists international, 85, 1217–1240Google Scholar
  23. Moura, J.H.A., Araujo, G.G.L., Saraiva, E.P., Albuquerque, I.R.R., Turco, S.H.N., Costa, S.A.P., Santos, N.M., 2016. Ingestive behavior of crossbred Santa Inês sheep fed water with different salinity levels, Semina: Ciências Agrárias, 37, 2, 1057–1068Google Scholar
  24. National Research Council – NRC, 2001. Nutrient requirements of small ruminants. 7ed. Washington: The National Academisc Press. 381p.Google Scholar
  25. National Research Council – NRC, 2007. Nutrient requeriments of small ruminants: Sheep. Goats. Cervids. And New World Camelids, (Washington. D.C.)Google Scholar
  26. Pinho, R.A., Santos, O.C., Oliveira, J.S., Carvalho, G.G.P., Silva, T.C., Macedo, A.J.S., Corrêa, Y.S., Zanine, A.M., 2018. Does the level of forage neutral detergent fiber affect the ruminal fermentation, digestibility and feeding behavior of goats fed cactus pear? Animal Science Journal, 89, 1424–1431CrossRefGoogle Scholar
  27. Pluske, J.R., Hampson, D.J., Williams, I. H, 1997. Factors influencing the structure and function of the small intestine in the weaned pig: a review, Livestock Production Science, 51, 215–236CrossRefGoogle Scholar
  28. Ramos, A.O., Ferreira, M.A., Véras, A.S.C., Costa, S.B.M., Conceição, M.G., Silva, E.C., Salla, L.E., Sousa, A.R.D.L, 2013. Different fiber sources in diets based on spineless cactus in sheep feeding, Revista Brasileira de Saúde e Produção Animal, 14, 648–659CrossRefGoogle Scholar
  29. Russell, J. B., Onodera, R., Hino, T., 1991. Ruminal protein fermentation: new perspectives on previous contradictions, In Physiological aspects of digestion and metabolism in ruminants, 681–697Google Scholar
  30. Russel, J.B., O’Connor, J.D., Fox, D.G., Sniffen, C.J., Van Soest, P.J., 1992. A Net Carbohydrate and Protein System for evaluating cattle diets. I. Ruminal fermentation, Journal of Animal Science, 70, 3551–3561Google Scholar
  31. Russel, J.B., Rychlick, J.L., 2001. Factor t hat alter rumen microbial ecology, (Science Washington), 1119–1122Google Scholar
  32. Sakata, T., Tamate H., 1979. Rumen epithelium cell proliferation accelerated by propionate and acetate, Journal of Dairy Science, 62, 49–52CrossRefGoogle Scholar
  33. Santos, A. O. A., Batista, Â. M. V., Mustafa, A., Amorim, G. L., Guim, A., Moraes, C., Lucena, R. B., Andrade, R., 2010. Effects of Bermudagrass hay and soybean hulls inclusion on performance of sheep fed cactus-based diets, Tropical Animal Health and Production, 42, 487–494CrossRefGoogle Scholar
  34. Silva, D.J., Queiroz, A.C., 2002. Análise de alimentos: métodos químicos e biológicos (Viçosa, MG: UFV)Google Scholar
  35. Sniffen, C. J., O'connor, J. D., Van Soest, P. J., Fox, D. G., Russell, J. B., 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability, Journal of Animal Science, 70, 3562-3577CrossRefGoogle Scholar
  36. Soares, C. A., Campos, J. M. S., Valadares Filho, S.C., Valadares, R.F.D., Mendonça, S.S., Queiroz, A.C., Lana, PR.P., 2004. Intake, Apparent Digestibility, Milk Production and Composition in Dairy Cows Fed with Wheat Middlings, Revista Brasileira de Zootecnia, 33, 2161–2169Google Scholar
  37. Sousa, N.M., Oliveira, J.S., Silva, D.S., Santos, E.M., Medeiros, A.N., Ramos, J.P.F., Brito, E.A., 2018. Levels of neutral detergent fiber in diets with forage palm for dairy goats, Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70, 5, 1595–1604CrossRefGoogle Scholar
  38. Suárez, B. J., Van Reenen, C. G., Gerrits, W. J. J., Stockhofe, N., Van Vuuren A. M., Dijkstra, J., 2006. Effects of Supplementing Concentrates Differing in Carbohydrate Composition in Veal Calf Diets: II. Rumen Development, Journal of Dairy Science, 89, 4376–4386CrossRefGoogle Scholar
  39. Sun, P., Wang, J.Q., Zhang, H., 2011. Effects of supplementation of Bacillus subtilis natto Na and N1 strains on rumen development in dairy calves, Animal Feed Science and Technology, 164, 154–160CrossRefGoogle Scholar
  40. Teixeira, A.S., 1990. Nutrição dos ruminantes, (Lavras: ESAL/FAEPE)Google Scholar
  41. Valadares, R.F.D., Broderick, G.A., Valadares Filho, S.C., 1999. Effect of replacing alfalfa with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives, Journal of Dairy Science, 82, 2686–2696CrossRefGoogle Scholar
  42. Van Soest, P.J., 1994. Nutritional ecology of the ruminant, (2 ed. Ithaca: Cornell University)Google Scholar
  43. Wanderley, W.L., Ferreira, M.A., Andrade, D.K.B., Véras, A.S.C., Farias, I., Lima, L.E., Dias, A.M.A., 2002. Replacement of Forage Cactus (Opuntia ficus indica Mill) for Sorghum Silage (Sorghum bicolor (L.) Moench) in the Dairy Cows Feeding, Revista Brasileira Zootecnia, 31, 273–281CrossRefGoogle Scholar
  44. Weiss, W., 1999. Energy prediction equations for ruminant feeds. Proc. Cornell nutrition conference feed manufactures, Ithaca.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Kleitiane Balduino da Silva
    • 1
  • Juliana Silva de Oliveira
    • 1
    Email author
  • Edson Mauro Santos
    • 1
  • Felipe Queiroga Cartaxo
    • 2
  • Ricardo Romão Guerra
    • 1
  • Aelson Fernandes do Nascimento de Souza
    • 1
  • Ana Cecília Souza Muniz
    • 1
  • Gabriel Ferreira de Lima Cruz
    • 1
  1. 1.Federal University of Paraíba (UFPB)AreiaBrazil
  2. 2.State University of Paraíba (UEPB)Campina GrandeBrazil

Personalised recommendations