Advertisement

Dietary roughage sources affect lactating Holstein x Zebu cows under experimental conditions in Brazil: a meta-analysis

  • Dileta Regina Moro AlessioEmail author
  • João Pedro Velho
  • Antônio Augusto Cortiana Tambara
  • Ivan Pedro de Oliveira Gomes
  • Deise Aline Knob
  • Ione Maria Pereira Haygert-Velho
  • Marcos Busanello
  • André Thaler Neto
Regular Articles

Abstract

To reduce costs, lactating cows are often fed a higher proportion of roughage and alternative feeds; however, such protocols may not lead to optimal milk production. Using a meta-analysis, we evaluated the effects of dietary roughage sources on the composition, voluntary intake, and digestibility of diets fed to crossbred Holstein x Zebu cows under experimental feeding conditions in Brazil. Finally, we assessed the effects of dietary roughage sources on milk yield and composition. The database was composed of 43 experiments with 183 treatments, including 943 lactating cows. The data were obtained from studies published between January 2000 and December 2015. The data were evaluated by analysis of variance, considering the distribution of variables. The diets differed in dry matter and crude protein (CP) contents according to the roughage sources. Diets based on corn silage demonstrated higher intakes of neutral detergent fiber (NDF), CP, and total digestible nutrients, which improved the digestibility of NDF and CP, and resulted in a higher milk yield compared to the diets with one roughage source or those with a combination of two roughage sources. The present study demonstrated that feeding crossbred Holstein x Zebu lactating cows alternative roughage sources compromised milk production and that lactating cows produced higher milk yields when fed corn silage.

Keywords

Bos taurus Digestibility Dietary fiber Milk production Meta-analysis Silage 

Notes

Acknowledgements

We thank all Brazilian researchers cited in the database references. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. We also thank the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) and the Programa de Bolsas de Monitoria de Pós-graduação da Universidade do Estado de Santa Catarina (PROMOP - UDESC) for grants awarded to the first author during their doctoral study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abreu, D.C. de, Lana, R. de P., Oliveira, A.S. de, Paula, R.M. de, Rodrigues, J.P.P., Ghedini, C.P., Andrade, F.L. de, Fonseca, M.A., 2015. Ureia de liberação lenta em dietas à base de cana-de-açúcar para vacas mestiças Holandês-Zebu, Revista Agrarian, 8, 30, 399–404.Google Scholar
  2. Agricultural and Food Research Council (AFRC), 1993. Energy and protein requirements of ruminants, (CAB International: Wallingford).Google Scholar
  3. Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M., Sparovek, G., 2013. Köppen's climate classification map for Brazil, Meteorologische Zeitschrift, 22, 711–728.CrossRefGoogle Scholar
  4. Alessio, D.R.M., 2017. Produção e composição do leite em função da alimentação de vacas em condições experimentais no Brasil, (unpublished PhD thesis, Universidade do Estado de Santa Catarina).Google Scholar
  5. Canaza-Cayo, A.W., Cobuci, J.A., Lopes, P.S., Torres, R. de A, Martins, M.F., Daltro, D. dos S, Silva, M.V.G.B. da, 2016. Genetic trend estimates for milk yield production and fertility traits of the Girolando cattle in Brazil, Livestock Science, 190, 113–122.Google Scholar
  6. Cattani, M., Guzzo, N., Mantovani, R., Bailoni, L., 2017. Effects of total replacement of corn silage with sorghum silage on milk yield, composition, and quality, Journal of Animal Science and Biotechnology, 8, 15, 1–8.Google Scholar
  7. Cichota, R., Vogeler, I., Werner, A., Wigley, K., Paton, B., 2018. Performance of a fertiliser management algorithm to balance yield and nitrogen losses in dairy systems, Agricultural Systems, 162, 56–65.CrossRefGoogle Scholar
  8. Deresz, F., Martins, C.E., Freitas, A.F., Rocha, W.S.D., Silva, N.J. de J, Vega, D. da S, Morais, T.A., 2010. Suplementação concentrada e a produção de leite de vacas mestiças em pastagens de capim-elefante durante a época chuvosa, Revista Científica de Produção Animal, 12, 2, 212–214.Google Scholar
  9. Ferraretto, L.F., Shaver, R.D., Luck, B.D., 2018. Silage review: recent advances and future technologies for whole-plant and fractionated corn silage harvesting, Journal of Dairy Science, 101, 3937–3951.CrossRefGoogle Scholar
  10. Fox, D.G., Tedeschi, L.O., Tylutki, T.P., Russell, J.B., Van Amburgh, M.E., Chase, L.E., Pell, A.N., Overton, T.R., 2004. The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion, Animal Feed Science and Technology, 112, 29–78.CrossRefGoogle Scholar
  11. Fraga, A.B., Silva, F. de L, Hongyu, K., Santos, D. da S, Murphy, T.W., Lopes, F.B., 2016. Multivariate analysis to evaluate genetic groups and production traits of crossbred Holstein × Zebu cows, Tropical Animal Health Production, 48, 533–538.Google Scholar
  12. Galvão Jr., J.G.B., Silva, J.B.A., Morais, J.H.G., Lima, R.N., 2014. Palma forrageira na alimentação de ruminantes: Cultivo e utilização. Acta Veterinaria Brasilica, 8, 78–85.Google Scholar
  13. Hall, M.B., Mertens, D.R., 2017. Carbohydrates—characterization, digestion, and utilization, Journal of Dairy Science, 100, 12, 10078–10093.CrossRefGoogle Scholar
  14. Hassanat, F., Gervais, R., Benchaar, C., 2017. Methane production, ruminal fermentation characteristics, nutrient digestibility, nitrogen excretion, and milk production of dairy cows fed conventional or brown midrib corn silage, Journal of Dairy Science, 100, 2626–2636.CrossRefGoogle Scholar
  15. Hentz, F., Velho, J.P., Nörnberg, J.L., Haygert-Velho, I.M.P., Henz, E.L., Henn, J.D., Peripolli, V., Zardin, P.B., 2017. Fractionation of carbohydrates and nitrogenous constituents of late crop corn silages ensiled with different specific masses, Semina, Ciências Agrárias, 38, 1, 491–502.CrossRefGoogle Scholar
  16. Higgs, R.J., Chase, L.E., Van Amburgh, M.E., 2012. Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows, Journal of Dairy Science, 95, 4, 2004–2014.CrossRefGoogle Scholar
  17. Knob, D.A., Alessio, D.R.M., Thaler Neto, A., Mozzaquatro, F.D., 2016. Reproductive performance and survival of Holstein and Holstein × Simmental crossbred cows, Tropical Animal Health and Production, 48, 5, 1409–1413.CrossRefGoogle Scholar
  18. Krämer-Schmid, M., Lund, P., Weisbjerg, M.R., 2016. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows, Animal Feed Science and Technology, 219, 68–76.CrossRefGoogle Scholar
  19. Lagrotta, M.R., Euclydes, R.F., Verneque, R da S, Santana Jr., M.L., Pereira, R.J., Torres, R. de A, 2010. Relação entre características morfológicas e produção de leite em vacas da raça Gir, Pesquisa Agropecuária Brasileira, 45, 4, 423–429.Google Scholar
  20. Lima, L.P., Veloso, C.M., Silva, F.F. da, Pires, A.J.V., Teixeira, F.A., Nascimento, P.V.N., 2015. Milk production and economic assessment of cassava bagasse in the feed of dairy cows, Acta Scientiarum, Animal Sciences, 37, 3, 307–313.Google Scholar
  21. Lopes, M.A., Lima, A.L.R., Carvalho, F. de M, Reis, R.P., Santos, I.C., Saraiva, F.H., 2007. Efeito do tipo de mão-de-obra nos resultados econômicos de sistemas de produção de leite na região de Lavras (MG): um estudo multicascos, Revista Ceres, 54, 312, 172–181.Google Scholar
  22. Lovatto, P.A., Lehnen, C.R., Andretta, I., Carvalho, A.D., Hauschild, L., 2007. Meta-análise em pesquisas científicas - Enfoque em metodologias, Revista Brasileira de Zootecnia, 36(Suppl.), 285–294.Google Scholar
  23. McAlonn, C.G., Whyte, P., More, S.J., Green, M.J., O’Grady, L., Garcia, A., Doherty, M.L., 2016. The effect of paratuberculosis on milk yield—a systematic review and meta-analysis, Journal of Dairy Science, 99, 2, 1449–1460.CrossRefGoogle Scholar
  24. Melo, M.T.P. de, Rocha Jr., V.R., Caldeira, L.A., Pimentel, P.R.S., Dos Reis, S.T., Jesus, D.L.S., 2017. Cheese and milk quality of F1 Holstein x Zebu cows fed different levels of banana peel, Acta Scientiarum, Animal Sciences, 39, 2, 181–187.Google Scholar
  25. Moraes, F. de, Lopes, M.A., Brunhn, F.R.P., Carvalho, F.M., Lima, A.L.R., Reis, E.M.B., 2016. Efeito de índices técnicos e gerenciais na rentabilidade da atividade leiteira com diferentes tipos de mão de obra, Archivos Latinoamericanos de Producción Animal, 24, 1, 29–38.Google Scholar
  26. National Research Council (NRC), 2001. Nutrient requeriments of dairy cattle, (National Academy Press, Washington).Google Scholar
  27. National Research Council (NRC), 2016. Nutrient requirements of beef cattle, (National Academies Press, Washington).Google Scholar
  28. Normand, S.T., 1999. Tutorial in biostatistics: Meta-analysis: formulating, evaluating, combining and reporting, Statistics in Medicine, 359, 18, 321–359.CrossRefGoogle Scholar
  29. Ortuzar, J., Martinez, B., Bianchini, A., Stratton, J., Rupnow, J., Wang, B., 2018. Quantifying changes in spore-forming bacteria contamination along the milk production chain from farm to packaged pasteurized milk using systematic review and meta-analysis, Food Control, 86, 319–331.CrossRefGoogle Scholar
  30. Peel, M.C., Finlayson, B.L., Mcmahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification, Hydrology and Earth System Science, 11, 1633–1644.CrossRefGoogle Scholar
  31. Pimentel, P.R.S., Rocha Jr., V.R., Melo, M.T P. de, Ramos, J.C.P., Cardoso, L.G., Silva, J.J.P., 2016. Feeding behavior of F1 Holstein x Zebu lactating cows fed increasing levels of banana peel, Acta Scientiarum, Animal Sciences, 38, 4, 431–437.Google Scholar
  32. Quatrin, M.P., Olivo, C.J., Agnolin, C.A., Machado, P.R., Nunes, J.S., Correa, M. da R, Rodrigues, P.F., Bratz, V.F., Simonetti, G.D., 2015. Efeito da adubação nitrogenada na produção de forragem, teor de proteína bruta e taxa de lotação em pastagens de azevém, Boletim da Indústria Animal, 72, 1, 21–26.Google Scholar
  33. Ribeiro, O.L., Cecato, U., Roma, C.F. da C, Faveri, J.C., Gomes, J.A.N., Barbero, L.M., 2008. Produção de forragem e desempenho animal em pastagens de coast cross consorciada ou não com Arachis pintoi, com e sem nitrogênio, Acta Scientiarum Animal Sciences, 30, 4, 371–377.Google Scholar
  34. Ribeiro, V.M.P., Merlo, F.A., Gouveia, G.C., Winkelstroter, L.K., Abreu, L.R.A., Silva, M.V.G.B. da, Panetto, J.C. do C, Paiva, L. de C, Cembranelli, M. de A. R., Toral, F.L.B., 2017. Genetic analysis of productive and reproductive traits in multiple-breed dairy cattle populations, Pesquisa Agropecuária Brasileira, 52, 11, 1109–1117.Google Scholar
  35. Santana Jr., M.L., Pereira, R.J., Bignardi, A.B., Vercesi Filho, A.E., Menéndez-Buxadera, A., El Faro, L., 2015. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: genetic parameters and trends, Journal of Dairy Science, 98, 12, 9035–9043.CrossRefGoogle Scholar
  36. Santos, G.B. dos, Brandão, F.Z., Ribeiro, L. dos S., Ferreira, A.L., Campos, M.M., Machado, F.S., Carvalho, B.C. de, 2018. Milk production and composition, food consumption, and energy balance of postpartum crossbred Holstein-Gir dairy cows fed two diets of different energy levels, Tropical Animal Health and Production, 1–8.Google Scholar
  37. Sauvant, D., Schmidely, P., Daudin, J.J., St-Pierre, N.R., 2008. Meta-analysis of experimental data in animal nutrition, Animal, 2, 8, 1203–1214.CrossRefGoogle Scholar
  38. Statistical Analysis System (SAS), 2002. Statistical analysis system user’s guide: statistics, (Cary: SAS Institute).Google Scholar
  39. Stürmer, M., Busanello, M., Velho, J.P., Heck, V.I., Haygert-Velho, I.M.P., 2018. Relationship between climatic variables and the variation in bulk tank milk composition using canonical correlation analysis, International Journal of Biometeorology, 62(9), 1663–1674.CrossRefGoogle Scholar
  40. Teixeira Jr., F.E.P., Ruas, J.R.M., Lopes, M.A., da Costa, M.D., Pires, D.A. de A., Rocha Jr., V.R., 2016. Effect of different alternative roughages on the profitability of milk production systems with F1 Holstein x Zebu cows, Revista Ceres, 63, 807–815.Google Scholar
  41. Torquato, I.A., El Faro, L., Mascioli, A.S., 2017. Desempenho produtivo e curva de lactação de animais mestiços Holandês x Gir na região agreste de Pernambuco, Boletim de Indústria Animal, 74, 1, 27–35.CrossRefGoogle Scholar
  42. Tylutki, T.P., Fox, D.G., Durbal, V.M., Tedeschi, L.O., Russell, J.B., Van Amburgh, M.E., Overton, T.R., Chase, L.E., Pell, A.N., 2008. Cornell Net Carbohydrate and Protein System: a model for precision feeding of dairy cattle, Animal Feed Science and Technology, 143, 174–202.CrossRefGoogle Scholar
  43. Valadares Filho, S.C., Machado, P.A.S., Chizzotti, M.L., 2019. CQBAL 3.0. Tabelas brasileiras de composição de alimentos para bovinos. Disponível em: <www.ufv.br/cqbal>. Acessado em: 12 June 2019.
  44. Van Amburgh, M.E., Collao-Saenz, E.A., Higgs, R.J., Ross, D.A., Recktenwald, E.B., Raffrenato, E., Chase, L.E., Overton, T.R., Mills, J.K., Foskolos, A., 2015. The Cornell Net Carbohydrate and Protein System: updates to the model and evaluation of version 6.5, Journal of Dairy Science, 98, 9, 6361–6380.CrossRefGoogle Scholar
  45. Zardin, P.B., Velho, J.P., Jobim, C.C., Alessio, D.R.M., Haygert-Velho, I.M.P., Conceição, G.M., Almeida, P.S.G., 2017. Chemical composition of corn silage produced by scientific studies in Brazil—a meta-analysis, Semina, Ciências Agrárias, 38, 1, 503–511.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Dileta Regina Moro Alessio
    • 1
    Email author
  • João Pedro Velho
    • 2
  • Antônio Augusto Cortiana Tambara
    • 3
  • Ivan Pedro de Oliveira Gomes
    • 1
  • Deise Aline Knob
    • 1
  • Ione Maria Pereira Haygert-Velho
    • 2
  • Marcos Busanello
    • 4
  • André Thaler Neto
    • 1
  1. 1.Universidade do Estado de Santa Catarina, Centro de Ciências Agroveterinárias, Avenida Luiz de Camões, 2090LagesBrazil
  2. 2.Universidade Federal de Santa Maria, Campus de Palmeira das Missões, Avenida IndependênciaPalmeira das MissõesBrazil
  3. 3.Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Câmpus de São Vicente do SulSão Vicente do SulBrazil
  4. 4.Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil

Personalised recommendations