Histological effects on the kidney, spleen, and liver of Nile tilapia Oreochromis niloticus fed different concentrations of probiotic Lactobacillus plantarum

  • Maria Luiza Ruiz
  • Marco Shizuo OwatariEmail author
  • Marcela Maya Yamashita
  • José Victor Saffadi Ferrarezi
  • Patricia Garcia
  • Lucas Cardoso
  • Maurício Laterça Martins
  • José Luiz Pedreira Mouriño
Regular Articles


The aims of this study were to evaluate the inclusion of different concentrations of Lactobacillus plantarum in Nile tilapia diet and to verify histological effects on tissues of the animal organs, as well as to verify its effects on growth parameters and possible increase in the immune system. A total of 240 juveniles were distributed in 16 tanks arranged in a recirculation system. One control group and three treated groups (104, 106, and 108 colony-forming unit (CFU) g −1L. plantarum kg feed−1) were established in quadruplicate. After 35 days of supplementation, it was not possible to observe differences in growth rates and hematological parameters. However, in the kidney, there was a reduction in the presence of PAS-positive granular leukocytes (PAS-GL) between the collections (15 and 35 days). The liver had lower number of lesions related to loss of cordonal aspects of fish fed 108 CFU g−1 on day 15. Fish fed 104 and 108 CFU g−1 showed lower degree of congestion at day 35. The probiotic also provided a reduction in the number of melanomacrophage centers in the splenic tissue and an increase in the amount of goblet cells in the gut. The concentration 108 CFU g−1 of probiotic in diets increased the number of goblet cells, improved cordonal aspects, and reduced hepatic congestion, and indicated a possible improvement in the immunophysiological conditions of the fish.


Aquaculture Oreochromis niloticus Fish health Sustainable fish farming 



The authors recognize the Santa Catarina Federal University Aquaculture Department; Epagri - Company of Agricultural Research and Rural Extension of Santa Catarina, for the donation of fish and Nicoluzzi Industry Rations Ltda., Penha, Santa Catarina, for giving the feed used in the experiment.

Funding information

The authors recognize the National Council for Scientific and Technological Development (CNPq) for a research grant and financial support to J.L.P. Mouriño (CNPq 308292/2014-6) and M.L. Martins (CNPq 446072/2014-1, 305869/2014-0, 306635/2018-6); and CAPES (Coordination for Improvement of Higher Education Personnel) for scholarship to M.L. Ruiz.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. Agius, C., Roberts, R.J., 2003. Melano-macrophage centres and their role in fish pathology. J. Fish Dis. 26, 499–509.CrossRefGoogle Scholar
  2. Avella, M. A., Place, A., Du, S. J., Williams, E., Silvi, S., Zohar, Y., & Carnevali, O., 2012. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PloS one, 7(9), e45572.CrossRefGoogle Scholar
  3. Banerjee, G., & Ray, A. K., 2017. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci., 115, 66–77.Google Scholar
  4. Cao, L., Du, J., Ding, W., Jia, R., Liu, Y., Xu, P., Teraoka, H., & Yin, G., 2016. Hepatoprotective and antioxidant effects of dietary Angelica sinensis extract against carbon tetrachloride-induced hepatic injury in Jian carp (Cyprinus carpio var. Jian). Aquac. Res., 47(6), 1852-1863.Google Scholar
  5. Carnevali, O., de Vivo, L., Sulpizio, R., Gioacchini, G., Olivotto, I., Silvi, S., & Cresci, A., 2006. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258(1–4), 430–438.CrossRefGoogle Scholar
  6. Carnevali, O., Maradonna, F., & Gioacchini, G., 2017. Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155.CrossRefGoogle Scholar
  7. Carnevali, O., Zamponi, M.C., Sulpizio, R., Rollo, A., Nardi, M., Orpianesi, C., Silvi, S., Caggiano, M., Polzonetti, A.M., Cresci, A., 2004. Administration of probiotic strain to improve sea bream wellness during development. Aquac. Int. 12, 377–386.CrossRefGoogle Scholar
  8. Carvalho, J.V., Lira, A.D., Costa, D.S.P., Moreira, E.L.T., Pinto, L.F.B., Abreu, R.D., Albinati, R.C.B., 2011. The performance and intestinal morphometry of tilapia fingerlings fed mannanoligosaccharides and Bacillus subtilis. Rev. Bras. Saúde Prod. Anim. 12, 176–187.Google Scholar
  9. Cornélio, F. H. G., Cargnin-Ferreira, E., Borba, M. R. D., Mouriño, J. L. P., Fernandes, V. A. G., & Fracalossi, D. M., 2013. Growth, digestibility and resistance to pathogen infection in Nile tilapia fed with probiotics. Pesq. Agropec. Bras., 48(8), 863–870.Google Scholar
  10. Dash, G., Raman, R.P., Prasad, K.P., Makesh, M., Pradeep, M.A., Sem, S., 2015. Evaluation of Lactobacillus plantarum as feed supplement on host associated microflora, growth, feed efficiency, carcass biochemical composition and immune response of giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquaculture 432, 225–236.CrossRefGoogle Scholar
  11. Dawood, M.A.O., Koshio, S., 2016. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture 454, 243–251.CrossRefGoogle Scholar
  12. Denk, G. U., Cai, S. Y., Chen, W. S., Lin, A., Soroka, C. J., & Boyer, J. L., 2006. A comparison of gene expression in mouse liver and kidney in obstructive cholestasis utilizing high-density oligonucleotide microarray technology. World J. Gastroenterol: WJG, 12(16), 2536.CrossRefGoogle Scholar
  13. FAO, (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome.Google Scholar
  14. Ferguson, R.M.W., Merrifield, D.L., Harper, G.M., Rawling, M.D., Mustafa, S., Picchietti, S., Balcázar, J.L., Davies, S.J., 2010. The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J. Appl. Microbiol. 109, 851–862.CrossRefGoogle Scholar
  15. Finnie, I.A., Dwarakanath, A.D., Taylor, B.A., Rhodes, J.M., 1995. Colonic mucin synthesis is increased by sodium butyrate. Gut 36, 93–99.CrossRefGoogle Scholar
  16. Garcia, P., Magalhães, A.R.M., 2008. Protocolo de identificação e quantificação de bucefalose (enfermidade laranja) em mexilhões Perna perna. Bol. Inst. Pesca 34, 11–19.Google Scholar
  17. Garcia-Marengoni, N., Moura, M.C., Oliveira, N.T.E., Bombardelli, R.A., Menezes-Albuquerque, D., 2015. Use of probiotics Bacillus cereus var. toyoi and Bacillus subtilis C-3102 in the diet of juvenile Nile tilapia cultured in cages. Latin Am. J. Aquat. Res. 43, 601–606.Google Scholar
  18. Gaudier, E., Rival, M.; Buisine, M.-P., Robineau, I., Hoebler, C., 2009. Butyrate anemas upregulate muc genes expression but decrease adherent mucus thickness in mice colon. Physiol. Res, 58, 111–119.Google Scholar
  19. Gourbeyre, P., Denery, S., & Bodinier, M., 2011. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J. Leukoc. Biol., 89(5), 685–695.CrossRefGoogle Scholar
  20. Gram, L., Ringo, E., 2005. Chapter 17 Prospects of fish probiotics. Biology of Growing Animals, 2, 379–417.CrossRefGoogle Scholar
  21. Howard, D.W., Lewis E.J., Keller, B.J., Smith, C.S., 2004. Histological techniques for marine bivalve mollusks and crustaceans. NOAA Tech. Mem. NCCOS 5, 1–218.Google Scholar
  22. Ishikawa, N.M., Ranzani-Paiva, M.J.T., Lombardi, J.V., 2008. Total leukocyte counts methods in fish, Oreochromis niloticus. Arch. Vet. Sci. 13, 54–63.CrossRefGoogle Scholar
  23. Jatobá, A., Mouriño, J.L.P., 2015. Lactobacillus plantarum effect on intestinal tract of Oreochromis niloticus fingerlings. Ci. Anim. Bras. 16, 45–53.CrossRefGoogle Scholar
  24. Jatobá, A., Vieira, F.N., Neto, C.B., Silva, B.C., José Luís Pedreira Mouriño, J.L.P., Jerônimo, G.T., Dotta, G., Martins, M.L., 2008. Lactic-acid bacteria isolated from the intestinal tract of Nile tilapia utilized as probiotic. Pesq. Agropec. Bras. 43, 1201–1207.Google Scholar
  25. Jesus, G.F.A., Vieira, F.D.N., Silva, B.C., Junior, M.M.D.S., Ushizima, T.T., Schmidt, E.C., Bouzon, Z.L., Pereira, S.A., Pereira, S.A., Martins, M.L., Mouriño, J.L.P., 2017. Probiotic bacteria may prevent haemorragic septicaemia by maturing intestinal host defences in Brazilian native surubins. Aquac. Nutr., 23, 484–491.Google Scholar
  26. Kiron, V., 2012. Fish immune system and its nutritional modulation for preventive health care. Anim. Feed Sci. Technol., 173(1–2), 111–133.CrossRefGoogle Scholar
  27. Kongnum, K., Hongpattarakere, T., 2012. Effect of Lactobacillus plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (Litopenaeus vannamei) challenged with Vibrio harveyi. Fish Shellfish Immunol. 32, 170–177.CrossRefGoogle Scholar
  28. Maji, U. J., Mohanty, S., Pradhan, A., & Maiti, N. K., 2017. Immune modulation, disease resistance and growth performance of Indian farmed carp, Labeo rohita (Hamilton), in response to dietary consortium of putative lactic acid bacteria. Aquac. Int., 25(4), 1391–1407.CrossRefGoogle Scholar
  29. Martins, M.L., Pilarsky, F., Onaka, E.M., Nomura, D.T., Fenerick, J., Ribeiro, K., Myiazaki, D.M.Y., Castro, M.P., Malheiros, E. B., 2004. Hematologia e resposta inflamatória em Oreochromis niloticus submetida aos estímulos único e consecutivo de estresse de captura. Bol. Inst. Pesca 30, 71–80.Google Scholar
  30. Mattsoff, L., Oikari, A., 1987. Acute hyperbilirubinaemia in rainbow trout (Salmo gairdneri) caused by resin acids. Comp. Biochem. Physiol. 88C, 263–268.Google Scholar
  31. Mello, H., Moraes, J.R.E., Niza, I.G., Moraes, F. R., Ozório, R.O.A., Shimada, M.T., Filho, J.R.E., Claudiano, G.S., 2013. Beneficial effects of probiotics on the intestine of juvenile Nile tilapia. Pesq. Vet. Bras. 1, 724–730.Google Scholar
  32. Merrifield, D.L., Dimitroglou, A., Foey, A., Davies, S.J., Baker, R.T.M., Bogwald, J., Castex, M., Ringo, E., 2010a. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302, 1–18.CrossRefGoogle Scholar
  33. Merrifield, D.L., Bradley, G., Baker, R.T.M., Davies, S.J., 2010b. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquac. Nutr. 16, 496–503.Google Scholar
  34. Merrifield, D.L., Harper, G.M., Dimitroglou, A., Ringo, E. & Davies, S.J. 2010c. Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquac. Res., 41, 1268–1272.Google Scholar
  35. Moraes, J.R.E., Bozzo, F.R., Ozorio, R.O., Engrácia Filho, J.R., & Moraes, F.R., 2012. Acute aerocistitis induced by thioglycolate, lipopolysaccharide and inactivated Aeromonas hydrophila in Piaractus mesopotamicus: hematological effects. Braz. J. Vet. Res. Anim. Sci., 49, 345–353.CrossRefGoogle Scholar
  36. Mouriño, J.L.P., Pereira, G.V., Vieira, F.N., Jatobá, A.B., Ushizimad, T.T., Silva, B.C., Seiffert, W.C., Alves Jesus, G.F.A., Martins, M.L., 2016. Isolation of probiotic bacteria from the hybrid South American catfish Pseudoplatystoma reticulatum × Pseudoplatystoma corruscans (Siluriformes: Pimelodidae): A haematological approach. Aquac. Rep. 3, 166–171.Google Scholar
  37. Mouriño, J.L.P., Jatobá, A., Silva, B.C., Vieira, F.N., Martins, M.L., 2012. Probióticos na Aquicultura. Patologia e Sanidade de Organismos Aquáticos, 1st edn, pp. 381–404, Maringá: Massoni.Google Scholar
  38. MSD Animal Health, (2012). Technical Bulletin: Streptococcus in the Tilapia Environment. (access in: 24.07.2018).
  39. Owatari, M. S., Jesus, G. F. A., Brum, A., Pereira, S. A., Lehmann, N. B., de Pádua Pereira, U., Martins, M.L., & Mouriño, J. L. P., 2018a. Sylimarin as hepatic protector and immunomodulator in Nile tilapia during Streptococcus agalactiae infection. Fish Shellfish Immunol., 82, 565–572.CrossRefGoogle Scholar
  40. Owatari, M. S., Jesus, G. F. A., de Melo Filho, M. E. S., Lapa, K. R., Martins, M. L., & Mouriño, J. L. P., 2018b. Synthetic fibre as biological support in freshwater recirculating aquaculture systems (RAS). Aquacult. Eng., 82, 56–62.CrossRefGoogle Scholar
  41. Pacheco, S., Santos, M.A., 2002. Biotransformation, genotoxic, and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.) Ecotoxicol. Environ. Saf. 53, 331–347.Google Scholar
  42. Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N., Maita, M., 2011. Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res. Vet. Sci. 91, 92–97.CrossRefGoogle Scholar
  43. Ranzani-Paiva, M. J. T., Pádua, S.B., Tvares-Dias, M., Egami, M.I., 2013. Métodos para análise hematológica em peixes, 1st edn, pp. 46–68, Eduem Maringá.Google Scholar
  44. Saad, S.M.I., 2006. Probióticos e prebióticos: o estado da arte. Braz. J. Pharm. Sci. 42, 1–16.Google Scholar
  45. Silva, T.F.A., Petrillo, T.R., Yunis-Aguinaga, J., Marcusso, P.F., Claudiano, G.S., Moraes, F.R., Moraes, J.R.E., 2015. Effects of the probiotic Bacillus amyloliquefaciens on growth performance, hematology and intestinal morphometry in cage-reared Nile tilapia. Lat. Am. J. Aquat. Res. 43, 963–971.Google Scholar
  46. Sirimanapong, W., Thompson, K. D., Shinn, A. P., Adams, A., & Withyachumnarnkul, B., 2018. Streptococcus agalactiae infection kills red tilapia with chronic Francisella noatunensis infection more rapidly than the fish without the infection. Fish Shellfish Immunol., 81, 221–232.CrossRefGoogle Scholar
  47. Suphoronski, S.A., Chideroli, R.T., Facimoto, C.T., Mainardi, R.M., Souza, F.P., Lopera-Barrero, N.M., Jesus, G.F.A., Martins, M.L., Di Santis, G.W., De Oliveira, A., Gonçalves, G.S., Dari, R., Frouel, S., Pereira, U.P., 2019. Effects of a phytogenic, alone and associated with potassium diformate, on tilapia growth, immunity, gut microbiome and resistance against francisellosis. Sci. Rep., 9(1), 6045.CrossRefGoogle Scholar
  48. Surai, P., 2015. Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants, 4(1), 204–247.CrossRefGoogle Scholar
  49. Talpur, A.D., Munir, M.B., Mary, A., Hashim, R., 2014. Dietary probiotics and prebiotics improved food acceptability, growth performance, haematology and immunological parameters and disease resistance against Aeromonas hydrophila in snakehead (Channa striata) fingerlings. Aquaculture 14-20, 426–427.Google Scholar
  50. Tavares-Dias, M., & Martins, M. L., 2017. An overall estimation of losses caused by diseases in the Brazilian fish farms. J. Parasit. Dis., 41(4), 913–918.CrossRefGoogle Scholar
  51. Telli, G. S., Ranzani-Paiva, M. J. T., de Carla Dias, D., Sussel, F. R., Ishikawa, C. M., & Tachibana, L., 2014. Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities. Fish Shellfish Immunol., 39(2), 305–311.CrossRefGoogle Scholar
  52. Vieira, F.N., Buglione, C.C., Mouriño, J.P.L., Jatobá, A., Martins, M.L., Schleder, D.D., Andreatta, E.R., Barraco, M.A., Vinatea, L.A., 2010. Effect of probiotic supplemented diet on marine shrimp survival after challenge with Vibrio harveyi. Arq. Bras. Med. Vet. Zootec. 62, 631–638.CrossRefGoogle Scholar
  53. Weibel, E.R., 1963. Principles and methods for morphometrical study of the lung and other organs. Lab Investig. 12, 131–155.Google Scholar
  54. Wen, C.-M., 2016. Development and characterization of a cell line from tilapia head kidney with melanomacrophage characteristics. Fish Shellfish Immunol. 49, 442–449.CrossRefGoogle Scholar
  55. Yamashita, M. M., Pereira, S. A., Cardoso, L., de Araujo, A. P., Oda, C. E., Schmidt, É. C., Bouzon, Z.L., & Mouriño, J. L. P., 2017. Probiotic dietary supplementation in Nile tilapia as prophylaxis against streptococcosis. Aquac. Nutr., 23(6), 1235–1243.CrossRefGoogle Scholar
  56. Yu, L., Zhai, Q., Zhu, J., Zhang, C., Li, T., Liu, X., Zhao, J., Zhanga, H., Tian F., Chen, W., 2017a. Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicol. Environm. Saf., 143, 307–314.CrossRefGoogle Scholar
  57. Yu, L., Zhai, Q., Yin, R., Li, P., Tian, F., Liu, X., Zhao, J., Gong, J., Zhang, H., Chen, W., 2017b. Lactobacillus plantarum CCFM639 alleviate trace element imbalance-related oxidative stress in liver and kidney of chronic aluminum exposure mice. Biol. Trace Elem. Res., 176(2), 342–349.CrossRefGoogle Scholar
  58. Zachary, J. F., McGavin, D., & McGavin, M. D., 2018. Bases da patologia em veterinária. Elsevier Brasil.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Maria Luiza Ruiz
    • 1
  • Marco Shizuo Owatari
    • 1
    Email author
  • Marcela Maya Yamashita
    • 1
  • José Victor Saffadi Ferrarezi
    • 1
  • Patricia Garcia
    • 1
  • Lucas Cardoso
    • 1
  • Maurício Laterça Martins
    • 1
  • José Luiz Pedreira Mouriño
    • 1
  1. 1.AQUOS–Aquatic Organisms Health Laboratory, Aquaculture DepartmentFederal University of Santa Catarina (UFSC)FlorianopolisBrazil

Personalised recommendations