Advertisement

Nutritional efficiency of feed-restricted F1 Holstein/Zebu cows in early lactation

  • Flávio Pinto MonçãoEmail author
  • Pedro Felipe Santana
  • Vicente Ribeiro Rocha Júnior
  • José Reinaldo Mendes Ruas
  • João Paulo Sampaio Rigueira
  • Lucas Daniel Alcântara Borges
  • Gustavo Chamon de Castro Menezes
  • Thais Eleonora Santos Sousa
  • Maria Dulcinéia da Costa
  • Laura Lúcia Santos Oliveira
  • Fausto Expedito de Queiroz
Regular Articles
  • 14 Downloads

Abstract

The quantitative feed restriction of lactating cows has been used in intensive production systems as a strategy to reduce production costs. However, the effects of this restriction in F1 Holstein/Zebu cows are unclear. The objective of this work was to evaluate the effect of quantitative feed restriction on nutrient intake and digestibility, nitrogen balance, feed efficiency, feed behavior, and productive performance in F1 Holstein/Zebu cows during early lactation. Sixty F1 Holstein × Zebu cows were used at the stage of initial lactation (50 ± 13 days of lactation), and they had an initial body weight (BW) of 482 ± 43 kg. The experimental arrangement adopted was a completely randomized design, with five feed restriction levels (3.39, 2.75, 2.50, 2.25, and 2.00% of BW) and 12 cows in each treatment group. In the short term (63 days), there were reductions of 45.9% and 47.2% in dry matter intake (P < 0.01) and crude protein (P < 0.01), respectively, when the diet supply was limited from 3.39% BW to 2.00% of BW. There were declines in intake of ether extract (P < 0.01) and nonfibrous carbohydrates (P < 0.01), but there was no change in daily milk production (P = 0.44) nor the daily milk production corrected to 3.5% fat (P = 0.12); the averages were 14.01 kg/day and 13.25 kg/day, respectively. Considering the lower body weight loss, feed restriction is recommended up to 2.5% of the BW.

Keywords

Crossing Dairy cattle Intake Nitrogen balance Performance 

Notes

Acknowledgments

The authors thank the Foundation for Research Support of the State of Minas Gerais (FAPEMIG), the National Council for Scientific and Technological Development (CNPq), EPAMIG, and Instituto Nacional de Ciência e Tecnologia (INCT–Ciência Animal).

Funding information

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001.

Compliance with ethical standards

All animal care and handling procedures were approved by the Animal Care and Use Committee of the Universidade Estadual de Montes Claros, Brazil (protocol CEBEA-Unimontes 128/2016).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aiello, R.J.; Kenna, T.M.; Herbein, J.H. 1984. Hepatic gluconeogenic and ketogenic interrelationship in the lactating cow. Journal of Dairy Science 67: 1707–1715.CrossRefGoogle Scholar
  2. Association of official Analytical Chemists – International [AOAC]. 1990. Official Methods of Analysis, 12ed. AOAC, Washington, DC, USA.Google Scholar
  3. Baiard, G.D.; Lomax, M.A.; Symonds, H.W. 1980. Net hepatic and splachnic metabolism of lactate, pyruvate and proprionate in dairy cow in vivo in relation to lactation and nutrient supply. Biochemical Journal 186: 47–57.CrossRefGoogle Scholar
  4. Borges, A.M.; Martins, T.M.; Nunes, P.P.; Ruas, J.R.M. 2015. Reproduction of crossbreeding dairy cows: potentiality and challenges. Revista Brasileira de Reprodução Animal 39: 155–163.Google Scholar
  5. Burger, P.J.; Pereira, J.C.; Queiroz, A.C.; Silva, J.F.C.; Valadares Filho, S.C.; Cecon, P.R.; Casali, A.D.P. 2000. Comportamento ingestivo em bezerros holandeses alimentados com dietas contendo diferentes níveis de concentrado. Revista Brasileira de Zootecnia 29: 236–242.CrossRefGoogle Scholar
  6. Burke, C.R.; Willians, J.Y.; Hofmann, L.; Kay, J.K.; Phyn, C.V.C.; Meier, S. 2010. Effects of an acute feed restriction at the on set of the seasonal breeding period on reproductive performance and milk production in pasture – grazed dairy cows. Journal of Dairy Science 93: 1116–1125.CrossRefGoogle Scholar
  7. Carstens, G.E.; Johnson, D.E.; Ellenberger, M.A.E.; Tatum, J.D. 1991. Physical and chemical components of the empty body during compensatory growth in beef steers, Journal of Animal Science 69: 3251–3264.CrossRefGoogle Scholar
  8. Chizzotti, M.L.; Valadares Filho, S. C.; Valadares, R.F.D.; Chizzotti, F.H.M and Tedeschi, L.O. 2008. Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livestock Science 113:218–225.CrossRefGoogle Scholar
  9. Coelho, S.G.; Campos, B.G.; Lima, J.A.M.; Carvalho, A.Ú. 2013. Mechanisms of action of BSTr and use in crossbred cows. Revista V e Z de Minas 116: 6-15 (in Portuguese, with abstract in English).Google Scholar
  10. Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.; Azevedo, J.A.G. 2012. Methods for food analysis = Métodos para análise de alimentos. Suprema, Visconde do Rio Branco, MG, Brasil (in Portuguese).Google Scholar
  11. Félix, A.; Repetto, J.L.; Hernández, N.; Pérez-Ruchel, A.; Cajarville, C. 2017. Restricting the time of access to fresh forage reduces intake and energy balance but does not affect the digestive utilization of nutrients in beef heifers. Animal Feed Science and Technology 226: 103–112.CrossRefGoogle Scholar
  12. Ferraretto, L.F.; Gencoglu, H.; Hackbart, K.S.; Nascimento, A.B.; Dalla Costa, F.; Bender, R.W.; Guenther, J.N.; Shaver, R.D.; Wiltbank, M.C. 2014. Effect of feed restriction on reproductive and metabolic hormones in dairy cows. Journal of Dairy Science 97:754–763.CrossRefGoogle Scholar
  13. Fruscalso, V.; Stumpf, M.T.; McManus, C. M. and Fischer, V. 2013. Feeding restriction impairs milk yield and physicochemical properties rendering it less suitable for sale. Scientia Agricola 70: 237–241.CrossRefGoogle Scholar
  14. Gaillard, C.; Friggens, N.C.; Taghipoor, M.; Weisbjerg, M.R.; Lehmann, J.O.; Sehested, J. 2015. Effects of an individual weight-adjusted feeding strategy in early lactation on milk production of Holstein cows during extended lactation. Journal of Dairy Science 99: 2221–2236.CrossRefGoogle Scholar
  15. Keogh, K.; Kenny, D.A.; Cormican, P.; McCabe, M.S.; Kelly, A.K.; Waters, S.M. 2016. Effect of dietary restriction and subsequent re-alimentation on the transcriptional profile of bovine skeletal muscle. PLoS One 11: e0149373.CrossRefGoogle Scholar
  16. Lago, E.P.; Pires, A.V.; Susin, I.; Faria, V.P.; Lago, L.A. 2001. Effect of body condition score at calving on energy metabolism, milk yield and disease occurrence in postpartum of dairy cows. Revista Brasileira de Zootecnia 30: 1544–1549.CrossRefGoogle Scholar
  17. Licitra, G.; Hernandez, T.M.; Van Soest, P.J. 1996. Standartization of procedures for nitrogen fractionation of ruminants feeds. Animal Feed Science and Technology 57: 347–358.CrossRefGoogle Scholar
  18. Mertens, D.R. 2002. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beaker or crucibles: collaborative study. Journal of AOAC International 85: 1217–1240.Google Scholar
  19. Mezzalira, J.C.; Carvalho, P.C.F.; Fonseca, L.; Bremm, C.; Reffatti, M.V.; Poli, C.H.E.C.; Trindade, J.K. 2011. Methodological aspects of ingestive behavior of grazing cattle. Revista Brasileira de Zootecnia 40: 1114-1120 (in Portuguese, with abstract in English).Google Scholar
  20. Mishra, S.; Kumari, K.; Dubey, A. 2016. Body Condition Scoring of Dairy Cattle: a review. Research & Reviews: Journal of Veterinary Sciences 2:58–65.Google Scholar
  21. National Research Council – International [NRC]. 2001. Nutrient requirements of dairy cattle, 7th rev. ed. National Academies Press, Washington, DC, USA.Google Scholar
  22. Sampaio, R.L.; Resende, F.D.; Reis, R.A.; Oliveira, I.M.; Custódio, L.; Fernandes, R.M.; Pazdiora, R.D.; Siqueira, G.R. 2017. The nutritional interrelationship between the growing and finishing phases in crossbred cattle raised in a tropical system. Tropical Animal Health and Production 49: 1015–1024.CrossRefGoogle Scholar
  23. Santos, S.A.; Valadares Filho, S.C.; Detmann, E.; Valadares, R.F.D.; Ruas, J.R.M.; Prados, L.F.; Veja, D.S.M. 2012. Voluntary intake and milk production in F1 Holstein×zebu cows in confinement. Tropical Animal Health and Production 44: 1303–1310.CrossRefGoogle Scholar
  24. SAS Institute. 2008. SAS/STAT 9.2 Users Guide. SAS Institute, Inc. Cary, NC, USA.Google Scholar
  25. Sklan, D.; Ashkenazi, R.; Braun, A.; Devorin, A.; Tabori, K. 1992. Fatty acids, calcium soaps of fatty acids and cottonseeds fed to high yielding cows. Journal of Dairy Science 75: 2463–2472.CrossRefGoogle Scholar
  26. Sousa, D.O.; Oliveira, C.A.; Velasqueza, A.V.; Souza, M.; Chevaux, E.; Mari, L.J.; Silva, L.F.P. 2018. Live yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Animal Feed Science and Technology 236: 149–158.CrossRefGoogle Scholar
  27. Valadares Filho, S. C.; Broderick, G.A.; Valadares, R.F.; Clayton, M.K. 2000. Effect of replacing alfalfa silage with high moisture corn on nutrient utilization and milk production. Journal of Dairy Science 83: 106–114.CrossRefGoogle Scholar
  28. Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583–3597.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Flávio Pinto Monção
    • 1
    Email author
  • Pedro Felipe Santana
    • 1
  • Vicente Ribeiro Rocha Júnior
    • 1
  • José Reinaldo Mendes Ruas
    • 1
  • João Paulo Sampaio Rigueira
    • 1
  • Lucas Daniel Alcântara Borges
    • 1
  • Gustavo Chamon de Castro Menezes
    • 1
  • Thais Eleonora Santos Sousa
    • 1
  • Maria Dulcinéia da Costa
    • 1
  • Laura Lúcia Santos Oliveira
    • 1
  • Fausto Expedito de Queiroz
    • 1
  1. 1.Department of Animal Science and TechnologyState University of Montes ClarosJanaúbaBrazil

Personalised recommendations