Tropical Animal Health and Production

, Volume 51, Issue 8, pp 2269–2278 | Cite as

Comparison of the efficacy of crude methanolic extracts of Cassia occidentalis and Euphorbia hirta with levamisole-HCL against gastrointestinal nematodes of economic importance to goat production in Uganda

  • Godfrey Nsereko
  • Patrick Emudong
  • Joseph Omujal
  • James Acai
  • Joseph M. Kungu
  • Fredrick Kabi
  • Swidiq Mugerwa
  • James BugezaEmail author
Regular Articles


Natural compounds from medicinal plants provide safe and sustainable alternatives to synthetic anthelmintics. In this study, we assessed in vitro and in vivo anthelmintic activity of Cassia occidentalis (NH-A) and Euphorbia hirta (NH-B) and compared it with levamisole-HCl. The shoots of NH-A and whole plant of NH-B were used to prepare extracts using 70% methanol which were used in the in vitro and in vivo assays. In vitro assays of crude methanolic extracts (CMEs) of NH-A and NH-B on larvae of mixed gastrointestinal nematodes (GINs) of goats revealed mortalities of 95.7% (at 100 mg ml−1) and 98.1% (at 50 mgml−1) 24 h postexposure. In vivo assays of NH-A administered orally at doses of 100, 300, 900, and 2700 mg kg−1 bwt revealed dose- and time-dependent anthelmintic effects in goats experimentally infected with mixed species of GINs. NH-B exhibited similar properties when administered at doses of 50, 100, 200, and 400 mg kg−1 bwt. Both NH-A (900 mg kg−1 bwt) and levamisole (7.5 mg kg−1 bwt) achieved a 100% reduction in fecal egg count per gram (EPG) on day 21 and day 14 respectively posttreatment. NH-B (400 mg kg−1 bwt) achieved 93.1% and 86.1% reduction in fecal EPG 7 and 14 days postexposure respectively compared with 88.2% and 82.3% reduction with levamisole-HCl 7 and 14 days postexposure. Our results show that extracts of both plants can disrupt helminth lifecycles by suppressing the egg-laying capacity in adult worms but also kill their infective larvae. Future studies should aim at establishing synergies or antagonisms between the two plant extracts and further development for control of helminths in goats.


Helminths Natural products Agro-ecological zones Cassia occidentalis Euphorbia hirta 



The National Agricultural Research Organization (NARO) and the National Livestock Resources Research Institute (NaLIRRI) are highly commended for providing a suitable working environment that enabled us to accomplish this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Statement of animal rights

All applicable guidelines for the care and use of animals were followed.


  1. Bharwad, D., Vasan, V., Kinhekar, A. S., Kumar, V., Ravikumar, R., & Kumar, V. (2015). Therapeutic evaluation of indigenous veterinary medication for endoparasite infestation in bovines under field conditions. Indian J. Appl. Res, 5(4), 755–756.Google Scholar
  2. Coles, G., Bauer, C., Borgsteede, F., Geerts, S., Klei, T., Taylor, M., & Waller, P. (1992). World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 44(1–2), 35–44.CrossRefGoogle Scholar
  3. Daniel, U., Ohalete, C., Ibiam, U., & Okechukwu, R. (2015). Medicinal plants effectiveness against helminths of cattle. Journal of Applied Biosciences, 86(1), 7900–7917.CrossRefGoogle Scholar
  4. Eleazu, C., Eleazu, K., Awa, E., & Chukwuma, S. (2012). Comparative study of the phytochemical composition of the leaves of five Nigerian medicinal plants. Journal of Biotechnology and Pharmaceutical Research, 3(2), 42–46.Google Scholar
  5. Fomum, S. W., & Nsahlai, I. V. (2017). In vitro nematicidal activity of plant species possessing alkaloids and tannins. Cogent Food & Agriculture, 3(1), 1334295.CrossRefGoogle Scholar
  6. Gracelin, D. H. S., Britto, A., & Kumar, B. (2013). Qualitative and quantitative analysis of phytochemicals in five Pteris species. Int J Pharm Pharm Sci, 5(1), 105–107.Google Scholar
  7. Harborne, A. (1998). Phytochemical methods a guide to modern techniques of plant analysis: springer science & business media.Google Scholar
  8. Hoste, H., Martinez-Ortiz-De-Montellano, C., Manolaraki, F., Brunet, S., Ojeda-Robertos, N., Fourquaux, I., Torres-Acosta, J., & Sandoval-Castro, C. (2012). Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Veterinary Parasitology, 186(1–2), 18–27.CrossRefGoogle Scholar
  9. Huang, L., Chen, S., & Yang, M. (2012). Euphorbia hirta (Feiyangcao): A review on its ethnopharmacology, phytochemistry and pharmacology. Journal of Medicinal Plants Research, 6(39), 5176–5185.CrossRefGoogle Scholar
  10. Innocent, T., & Deogracious, O. (2006). The anthelmintic activity of selected indigenous medicinal plants used by The Banyankole of Western Uganda. Journal of animal and veterinary advances, 5(8), 712–717.Google Scholar
  11. Iqbal, Z., Lateef, M., Ashraf, M., & Jabbar, A. (2004). Anthelmintic activity of Artemisia brevifolia in sheep. Journal of Ethnopharmacology, 93(2–3), 265–268.CrossRefGoogle Scholar
  12. Kateregga, J., Nabayunga, M., Vudriko, P., & Ndukui, J. (2014). Anthelmintic activity of Cassia occidentalis L. methanolic leaf extract on Ascaridia galli and Heterakis gallinarum and its acute toxicity. International Journal of Basic and Clinical Pharmacology, 3(1), 114–119.CrossRefGoogle Scholar
  13. Lateef, M., Iqbal, Z., Akhtar, M., Jabbar, A., Khan, M., & Gilani, A. (2006). Preliminary screening of Trachyspermum ammi (L.) seed for anthelmintic activity in sheep. Tropical Animal Health and Production, 38(6), 491–496.CrossRefGoogle Scholar
  14. Nabukenya, I., Rubaire-Akiiki, C., Olila, D., Ikwap, K., & Höglund, J. (2014). Ethnopharmacological practices by livestock farmers in Uganda: Survey experiences from Mpigi and Gulu districts. Journal of ethnobiology and ethnomedicine, 10(1), 9.CrossRefGoogle Scholar
  15. Ndjonka, D., Agyare, C., Lüersen, K., Djafsia, B., Achukwi, D., Nukenine, E., Hensel, A., & Liebau, E. (2011). In vitro activity of Cameroonian and Ghanaian medicinal plants on parasitic (Onchocerca ochengi) and free-living (Caenorhabditis elegans) nematodes. Journal of Helminthology, 85(3), 304–312.CrossRefGoogle Scholar
  16. Nyako, U., Bala, A., & Ardo, L. M. (2016). Management and practices of ethno-veterinary health amongst livestock producers in Africa. African Journal of Dairy Farming and Milk Production ISSN, 3(1), 116–119.Google Scholar
  17. Parthiban, R., Vijayakumar, S., Prabhu, S., & Yabesh, J. G. E. M. (2016). Quantitative traditional knowledge of medicinal plants used to treat livestock diseases from Kudavasal taluk of Thiruvarur district, Tamil Nadu, India. Revista Brasileira de Farmacognosia, 26(1), 109–121.CrossRefGoogle Scholar
  18. Roepstorff, A., & Nansen, P. (1998). Epidemiology, diagnosis and control of helminth parasites of swine (Vol. 3): FAO Rome.Google Scholar
  19. Saeed-ul-Hassan, S., Khalil-ur-Rehman, M., Niaz, U., Saeed, M. A., Hussain, K., Rao, S. A., & Ahmed, I. (2013). Isolation and characterization of irritant components of Euphorbia pilulifera L. Pak. J. Pharm. Sci, 26(1), 31–37.PubMedGoogle Scholar
  20. Saganuwan, A. S., & Gulumbe, M. L. (2006). Evaluation of in vitro antimicrobial activities and phytochemical constituents of Cassia occidentalis. Animal Research International, 3(3), 566–569.Google Scholar
  21. Soulsby, E. (1982). Helminths, Arthropods and Protozoa of Domesticated Animals. English Language Book Society/Bailliere Tindal. London. pp-599–607.Google Scholar
  22. Tariq, K., Chishti, M., Ahmad, F., & Shawl, A. (2009). Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Veterinary Parasitology, 160(1–2), 83–88.CrossRefGoogle Scholar
  23. Tchamadeu, M.-C., Dzeufiet, P., Nouga, C. K., Azebaze, A., Allard, J., Girolami, J.-P., Tack, I., Kamtchouing, P., & Dimo, T. (2010). Hypoglycaemic effects of Mammea africana (Guttiferae) in diabetic rats. Journal of Ethnopharmacology, 127(2), 368–372.CrossRefGoogle Scholar
  24. Usha, S., Rajasekaran, C., & Siva, R. (2016). Ethnoveterinary medicine of the Shervaroy Hills of Eastern Ghats, India as alternative medicine for animals. Journal of traditional and complementary medicine, 6(1), 118–125.CrossRefGoogle Scholar
  25. Verma, L., Singour, P., Chaurasiya, P., Rajak, H., Pawar, R., & Patil, U. (2010). Effect of ethanolic extract of Cassia occidentalis Linn. for the management of alloxan-induced diabetic rats. Pharmacognosy research, 2(3), 132.CrossRefGoogle Scholar
  26. Wang, X., Tanaka, M., Krstin, S., Peixoto, H., & Wink, M. (2016). The interference of selected cytotoxic alkaloids with the cytoskeleton: an insight into their modes of action. Molecules, 21(7), 906.CrossRefGoogle Scholar
  27. Wasswa, P., & Olila, D. (2006). The in-vitro ascaricidal activity of selected indigenous medicinal plants used in ethno veterinary practices in Uganda. African Journal of Traditional, Complementary and Alternative Medicines, 3(2), 94–103.Google Scholar
  28. Williams, A. R., Fryganas, C., Ramsay, A., Mueller-Harvey, I., & Thamsborg, S. M. (2014). Direct anthelmintic effects of condensed tannins from diverse plant sources against Ascaris suum. PloS one, 9(5), e97053.CrossRefGoogle Scholar
  29. Yadav, N. P., & Chanotia, C. (2009). Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn. The pharma review, 2009, 144–149.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.National Livestock Resources Research InstituteKampalaUganda
  2. 2.Central Public Health LaboratoryMinistry of HealthKampalaUganda
  3. 3.College of Veterinary Medicine Animal Resources and BiosecurityMakerere UniversityKampalaUganda

Personalised recommendations